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GENERAL INTRODUCTION 

Transition metal-catalyzed processes have been proven to be extremely useful for the 

synthesis of a wide variety of hetero- and carboannulated ring systems. Palladium-based 

methodologies ate especially conveniait, ̂ ce the metal complexes accommodate a number of 

differ^t fimctional groups, are not generally moisture or oxygan s^sitive, and catalyze some 

very novd transformations in good yield. 

Recoit work in the Larock group has shown that the palladium-catalyzed annulation of 

internal aUiynes with appropriately substituted aryl iodides provides a simply route to indoles, 

benzofiirans, benzopyrans, isoquinoUnes, isocoumarins, and indenes. This dissertation serves 

to expand and improve the synthetic scope of this m^odology and is organized into five 

different p^)a:s that are suitable for publication. The author of this manuscript was the primary 

investigator and author for each paper. 

Dissertation Organization 

ChaptCT 1 concerns the synthesis of indenones from o-iodo- or o-bromobenzaldehydes 

via the palladium-catalyzed annulation of internal alkynes. The reaction provides easy entry to 

the indenone nucleus, possibly though a Pd(IV) intermediate, but the regiochemistry of the 

product must be controlled sterically and isomerization is a problem with certain indenones. 

ChaptCT 2 describes the synthesis of isocoumarins and a-pyrones from appropriately 

substituted esters via the palladium-catalyzed annulation of internal alkynes. The reaction 

r^ochemistry must again be controlled stmcally and the reaction is thought to proceed though 

a seven-membered palladacyclic salt The a-pyrone synthesis represents the &st example of 

annulation onto internal allsynes by vinylic halides or triflates. 
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Chapter 3 is a publication describing the extension of this methodology to a variety of 

differait aromatic heterocycles. The significant contributions made by the author include the 

regioselective synthesis and desilylation of more hindered silylated benzoiurans and the 

synthesis of isochromenes from o-iodobaizyl alcohols. 

Ch^ter 4 examines the synthesis of phaianthrenes fix)m o-iodobiphenyl by the 

palladimn-catalyzed aimulation of intemal alkynes. The reaction represents a new, efficirat 

route to the phenanthrene substructure and could possibly be extended to other polycyclic 

aromatic hydrocarbons. The mechanism of the reaction is bdieved to involve dther 

electrophilic palladation onto an aromatic ring or oxidative insertion into an aryl C-H bond by a 

vinylic palladium intomediate. 

Ch^ter 5 involves the synthesis of other miscellaneous hetero- and carbocycles from 

vinylic halides, an expansion of the a-pyrone chemistry mentioned in Chapter 2. Although the 

chemistry provides a simple route to a number of useful organic substructures, it currently 

requires the use of cyclic vinylic halides to obtain annulated products in good yield. 

The general conclusion will discuss the current scope and limitations of the 

methodology by examining the common threads that tie all the ch^ters together. 

Finally, a compilation of pertinent iH and NMR spectra are contained in 

appendices A-E of this maniiscript These same supplementary spectra are also available 

through the American Chemical Society as described at the end of each ch^ter. 
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CHAPTER 1: SYNTHESIS OF INDENONES VIA PALLADIUM-CATALYZED 

ANNULATION OF INTERNAL ALKYNES 

A paper submitted to the Journal of Organic Chemistry 

R. C. Larock and M. J. Doty 

Department of Chemistry, Iowa State University, Ames. Iowa 50011 

S. Cacchi 

Dipartimento di Studi di Chimica e Tecnologia delle Sostame Biologicamente Attive, Universita degli Studi, 

'La Sapienza', Roma, Italy 

Received March 9,1993 

Abstract 

A number of 2,3-disubstituted-l-indenones have been prepared in fair to good yields 

by treating o-iodo- or o-bromobenzalddiyde with various internal alkynes in the presence of a 

palladium catalyst Synthetically, the methodology provides an especially convenient route to 

stable hindered indenones containing aryl, silyl, and 2se7r-alkyl groups. The reaction is believed 

to proceed through a palladium(IV) intermediate, and the regiochemistry of the reaction is 

controlled sterically. 

Introduction 

Indenones are usefiil intermediates in the syntheas of a variety of molecules, including 

the C-nor-Z>-homosteroid ring system,! photochromic indenone oxides,̂  2,4- and 3,4-
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disubstituted-l-naphthols,3 gibberellins,'̂  indanones,^ and indenes.® Indenones themselves 

have also been used as alcoholic fennentation activators J fungicides,̂  and potential estrogen 

binding receptors.̂  Among the most recent synthetic targets have been the hindered 

fimgicidally active 2-cyano-3-al]syl-l-indenones^ and various 2,3-diaryl-l-indenones.̂  

Although traditional indenone syntheses have largely relied upon Friedel-Crafts-type 

cyclizations and the addition of Grignard reagents to 2-substituted indanediones, a number of 

oiganometallic approaches utilizing alkynes have been reported over the last few years. These 

approaches tend to be stoichiometric in the metal and/or use carbon monoxide to form the 

carbonyl group of the indraone. Many differait metal complexes have been employed, 

including nickel,i2 rhodium,!^ iron,!'̂  manganese,!^ and palladium. 

Heck first reported the palladium-catalyzed formation of 2,3-diphenyl-l-indaione from 

o-iodobenzaldehyde and diphenylacetylene as a single example in 1989. A stoichiometric 

approach to 2,3-disubstituted-l-indenones from (o-formylaiyl)mercury and -palladium 

complexes and internal alkynes has also been recenfly reported. ̂  ̂  Because of our own current 

interest in this type of annulation process, we have explored the scope and limitations of 

this chemistry and wish now to report improved reaction conditions for the palladium-catalyzed 

synthesis of a wide variety of 2,3-disubstituted-l-indenones. 

Results and Discussion 

We have developed two general procedures for the annulation of internal alkynes by 

o-iodo- or <?-bromobenzaldehyde, the use of which depends on the aliyne undergoing 

annulation: procedure A, 5 mol % Pd(OAc)2,4 equiv of NaOAc, 1 equiv of n-Bu4NCl, 10 ml 

of DMF at 100 "C; procedure B, 5 mol % Pd(0Ac)2,1 or 4 equiv of Na2C03,1 equiv of 

n-Bu4Na, 10 ml of N, iV-dimethylacetamide (DMA) at 100 (eq. 1). Our results using these 

procedures are summarized in Table 1. Procedure A works well for diarylalkynes (entries 1, 
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Procedure 

2, and 12) and provides an 84% isolated yield of 2,3-diphenyl-l-indenone, a 26% 

improvement in yield over the previously reported procedure, lo Procedure B seems to be a 

more general procedure for a variety of alkynes containing aiyl, silyl, and re/r-alkyl groups 

(entries 3-11). Either o-iodo- or o-bromoben2aldehyde can be employed sucessfully in the 

annulation process, although &e iodide generally provides slightly higher indenone yields and 

fewer side products. Although the majority of reactions have beoi run on a 0 J mmol scale, 

increasing the scale to 5.0 mmol for the transformation depicted in aiHy 10 of Table 1 resulted 

in an almost identical yield (55 % versus 58%). 

Isomerization of the product is a problem with certain indenones. Isomerization to 

P,Y-enones is obSCTved with some indenones bearing a primary alkyl group in the 

3-position (entries 5 and 6). The P,y-enones are relatively unstable and this type of 

isomoization is known to occur under a variety of conditions during the synthesis of 

indenones.2.7,9 jhe ease of isomerization has been attributed to indenone antiaromaticity and a 

number of different mechanisms have be^ postulated for the isomerization depending on the 

reaction conditions. The rate of isomerization was dependent on the indenone being formed. 

2-Phenyl-3-methyl-l-indenone isomerized at such a dow rate that the resultant P,y-enone 

showed up only after a few days, whereas 2,3-di-/z-propyl-l-indenone and 2-/»/r-butyl-3-

methyl-l-indenone rapidly isomerized to a mixture within minutes. The latter indaione, 

possessing a bulky group in the 2-position isomerized more extensively, possibly due to a 

relief in strain (entry 6). 
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Table 1. Synthesis of Indenones from o-Halobenzaldehydes and Internal Alkynes (eq.1) 

procedure® time (h) product(s)' yield (%)' 



www.manaraa.com

6 1 CHa -C(CH3)3 B 10 

7 I Ph ~ C(CH3)3 B 24 

8 I Ph ZZ Si(CH3)3 B 17 

9 I —=-Si(CH3)3 B 30 

10 I Ph — C(CH3)20H b 24 

/~C(CH3)3 + [' ][ VC(CH3)3 26+26 

'CH3 

P 

C(CH3)3 81 ov 
Ph 

p 

Si(CH3)3 42® 

Ph 

Si(CH3)3 
49®'' 

P 

C(CH3)20H 58 

Ph 
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11 (CH3)3C- -C(CH3)3 B 24 C(CH3)3 

(CH3)3 

58 

12 I P-CH30C6H4-^-C6H5 A 24 ^OcV' 
^C6H40CH3 

(1:1) 

C6H4OCH3 82 

•C6H5 

^ See the text and experimental section for the detailed procedures. ^ A colon (:) indicates that the products were inseparable 

and a plus (+) indicates that they were separated. ^ Yields refer to isolated compounds purified by chromatography.''The 

second compound is tentatively assigned based on a crude NMR spectrum and its yield is based on GC measurements. 

®One equiv of base used.' Temperature is 80 °C. 
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This armulation process is highly regioselective for aUcynes containing tertiary alkyl, 

trimethylsilyl, or other hinctered groups, with the major isomer having the more sterically 

demanding group in the 2-position of the indenone (entries 6-11). Less hindered alkynes, such 

as 1-phenyl-l-propyne, tend to produce a 1:1 mixture of legioisomers (entries 3 and 4). 

Electronic effects through aromatic rings appear to be minimal (entry 12). The legiochemistry 

was established for the products of entries 3,^2 6,^2 and 12^0 by comparsion with known 

compounds, and was determined by subsequent desilylation for the silyl derivatives (see 

below). On the basis of these results, the regiochemistry shown was assumed for the products 

of entries 7,10, and 11. The reported NMR spectrum for 3-phenyl-l-indenone was 

inconsistait with the spectrum obtained after desilylation of the product of entry 8.2i The 

reported position for the 2-proton was at a chemical shift greater than 7.1 ppm. The proton 

shift observed for the compound described here was at 6.0 ppm, in agreement with those of 

other known indenones.̂ '̂ 2,22 

We believe fliat this annulation process proceeds as shown in Scheme 1: (1) reduction 

of Pd(0Ac)2 to the actual catalyst Pd(0), (2) oxidative addition of the aryl halide to Pd(0), (3) 

aiylpalladium coordination to the alkyne and then insertion of the alkyne to form a 

vinylpalladium intermediate, (4) a second oxidative insoHon into the aldehy<fe C-H bond to 

form a palladium(IV) intermediate, (5) elimination of HX by base, and (6) regeneration of the 

Pd(0) catalyst by reductive elimination to the indenone. A similiar mechanism involving 

oxidative addition of an aldehyde to an organqpalladium(lI) intermediate has been proposed for 

the palladium-catalyzed reactions of o-bromobenzalddiyde with methyl acrylate.23 Another 

possible mechanism involves addition of the C-Pd bond of the vinylpalladium intermediate 

across the OO bond of the aldehyde to produce a palladium(II) alkoxide, followed by p-

hydride elimination. However, there does not appear to be any prece<tent for eitha- of these 

steps. 

Altiiough the synthetic applications of this process are somewhat limited in scope due to 
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Scheme 1 

Pd-X 

Pd-X 

Pd(0) Pd(0Ac)2 

Pd-X 

Base 

-HX 

isomerization and a lack of regiochemical control, this chemistry proves to be very convenient 

and useful for the synthesis of some indenones that are difficult to obtain by traditional 

methods.  ̂ For example, 2,3-diphaiyl-6-methoxy-l-indenone was readily prepared 

r^oselectively in 65% overall yield fix>m commercially available 2-bromo-5-methoxybenzoic 

acid, employing our alkyne annulation as the key stq) (Scheme 2). This compound has 

previoudy been prepared as a potential estrogen binding recq)tor from 3-methoxybenzoic acid 

in 23% ovCTall yield as a 16:1 mixture of r^ioisomers via cyclodehydration 24 

The silyl-substituted indenones are also synthetically usefiil, as the silyl moiety can be 

removed or readily converted to other functional groups. For example, 3-phenyl-2-

(trimethylsilyl)-l-indenone was easily converted to 3-phenyl-l-indenone in the presence of 

aluminum chloride, followed by water, or brominated to produce 2-bromo-3-phenyl-l-
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Scheme 2 

CH3O 1.BHa-THF, 97% CH3O 

2. PCC. 95% *' 
H 

Br 

Ph — Ph J 
Procedure A, 71% 

CH3O 

indenone using NBS (Scheme 3). 

Scheme 3 

I.AICU 

a—SiMes 

2. H,0 

NBS 

79 % 

In conclusion, a useful synthesis of 2,3-disubstituted-l-indenones has been developed 

using the palladium-catalyzed annulation of internal alkynes by o-iodo- or 

o-bromobenzaldehyde. The procedure utilizes readily available starting materials. The reactions 

proceed under relatively mild conditions, and give fair to good indenone yields. Although the 
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reaction is somewhat limited in scope synthetically, it is particularly suited for the synthesis of 

hindered alkyl, aryl, or silyl 2,3-disubstituted-l-indenones and allows the r^ochemistry of 

the aryl ring of the indenone to be readily controlled, alleviating a problem frequently 

encountered during traditional Friedel-Crafts type cyclizations and 2-substituted indanedione 

chemistry. 1'8.9.20 

Experimental Section 

General. All and NMR spectra were recorded at 300 and 75.5 MHz 

respectively. Thin-layer chromatography (TLQ was preformed using commeiically prepared 

60 mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm), or basic KMn04 solution [3 g KMn04 + 20 g K2CC)3 + 5 ml 

NaOH (5%) + 3(X) ml H2O]. All melting points are uncorrected. 

Reagents. All reagents were used directly as obtained commaricaUy unless otherwise 

noted. Anhydrous forms of Na2CC)3, NaOAc, and AlQs were purchased from Fischer-

Scientific. All palladium compoimds were donated by Johnson Matthey, Inc. and Kawaken 

Fine Chemicals Co., Ltd. 2-Bromobenzaldehyde, 2-iod6benzyl alcohol, 4-iodoanisole, 

phenylacetylene, l-phenyl-2-(trimethylsilyl)acetylene, l-(l-cyclohexenyl)-2-

(trimethylsilyl)acetylene, 2-chloro-2-methylpropane, borane-THF, Cul, NBS, and PCC were 

obtained from Aldrich Chemical Co., Inc. 1-Phenyl-l-propyne, 4,4-dimethyl-2-pentyne, and 

4-octyne were purchased from Farchan Scientific Co. Diphenylacetylene was purchased from 

Eastman Kodak Co. 2-Bromo-5-methoxybenzoic acid was purchased from Lancaster 

Synthe ,̂ Inc. The following starting materials were prepared. 

2-Iodobenzaldehyde. 2-Iodobenzyl alcohol (11.5 g, 0.05 mol) and PCC (15.75 g, 

0.075 mol) were vigorously stirred in 1(K) ml of CH2CI2 at rt for 24 h. The reaction mixture 

was diluted with 400 ml ether and filtered flirough Florid. The solvent was evaporated under 
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reduced pressure and the resulting solid was chromatographed using 15:1 hexane/EtOAc to 

yield 93% of the desired compound as a white solid with spectral properties identical to those 

previously reported.̂  ̂

2-Bromo-5-methoxybenzaldehyde. To 2-bromo-5-methoxybenzoic acid (0.5 g, 

2.17 mmol) in THF (1 ml) purged with N2 and cooled to 0 °C was added borane-THF (2.85 

mmol) over a period of 10 min. After 5 h, the reaction was queiched with 1.3 ml of a 1:1 

THF/H2O mixture and the aqueous phase was saturated with 0.55 g of K2CXI)3. The mixture 

was extracted with 3 x 10 ml of ether and dried over MgS04. The solvent was removed under 

reduced pressure to yield 0.46 g (97%) of 2-hromo-5-methoxybenzyl alcohol as a clear liquid: 

1h NMR (CDOs) 6 2.03 (s, 1 H, OH), 3.80 (s, 3 H, CH3), 4.71 (s, 2 H, CH2), 6.71 (dd, J 

= 3, 8.7 Hz, 1 H, aryl), 7.06 (d, /= 3 Hz, 1 H, aryl), 7.41 (d, 7= 8.7 Hz, 1 H, aryl). This 

alcohol (0.46 g, 2.13 mmol) and PCC (1.34 g, 6.23 mmol) were stiired at rt for 10 h in 8.5 ml 

of CH2C12- The reaction mixture was diluted with 40 ml ether and filta-ed through Celite. The 

organic phase was concentrated by evaporation of the solvent at reduced pressure to yield a 

brown solid. EtOAc was added to the solid and the solution was filtered through silica gel to 

yield 0.43 g (95%) of the desired compound as a white solid (mp 75-76 oQ: ̂ H NMR 

(0x13) 5 3.76 (s, 3 H, CH3), 6.95 (dd, /= 3, 8.7 Hz, 1 H, aryl), 7.33 (d, J = 3 Hz, 1 H, 

aryl), 7.44 (d, 7= 8.7 Hz, 1H, aryl), 10.22 (s, 1 H, CHO); "c NMR (CDGs) 6 55.7, 

112.6, 117.9, 123.0, 133.8, 134.5, 159.2, 191.8; IR (CHas) 1699 (C=0) cm-l; mass 

spectrum m/z 213.9633 (calcd for CgHvQzBr, 213.9630). 

<ert-ButylphenyIacetylene.26 AIQ3 (0.114 g, 0.086 mmol) was placed in 25 ml of 

CH2CI2 under N2 at -78 ̂ C. l-Phenyl-2-(trimethylsilyl)acetylene (1.5 g, 8.6 mmol) and 

2-chloro-2-methylpropane (1.59 g, 17.24 mmol) in 25 ml of CH2Q2 were added dropwise. 

The reaction was complete in 4.25 h. The reaction mixture was quenched with water, extracted 

wifli ether, and filto-ed through Florisil. The solvent was removed under reduced pressure and 
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vacuum distillation (104 oC/24 mm Hg) afforded 0.89 g (65%) of a clear liquid whose spectral 

data were identical with previous reports. '̂'' 

4-MethoxydipIienyIacetyIene.28 4-Iodoanisole (2.34 g, 10 mmol), 

phenylacetylene (1.02 g, 10 mmol), Cul (17.3 mg, 0.09 mmol), Pda2(PPh3)2 (6.7 mg, 

0.0095 mmol), Pda2(CH3CN)2 (11.7 mg, 0.045 mmol), and diethylamine (60 ml) were 

stirred for 3 d at rt The reaction solvent was removed under reduced pressure and the residue 

was diluted with 1(X) ml ether, extracted with saturated NHUQ, and dried over Na2S04. The 

solvent was evaporated under reduced pressure and the crude product was chromatographed 

using 15:1 hexane/EtOAc to give 1.45 g of the desired compound with spectral properties 

idraitical to those previously reported.29 

General Procedure for the Palladium-Catalyzed Formation of 2,3-

Disubstltuted Indenones. Pd(0Ac)2 (6 mg, 0.027 mmol), the base (2.0 mmol unless 

otherwise noted), «-Bu4Na (150 mg, 0.54 mmol, Lancaster), the aldehyde (0.5 mmol), and 

the alkyne (1 mmol) were placed in a 4 dram vial which was heated in an oil bath at 

100 oC for the necessary period of time. The reaction was monitored by TLC (15:1 

hexane/EtOAc) to establi^ completion. The reaction mixture was cooled, diluted with 30 ml 

ether, washed with 2 x 45 ml portions of saturated NH4a, dried over anhydrous Na2S04, and 

filtared. The solvent was evaporated under reduced pressure (may have contained a small 

amount of solvent) and the product was isolated by chromatography on a silica gel column. 

The following compounds were prepared by the above procedure. 

2,3-Diplienyl-l-indenone (Entries 1 and 2, Table 1). The reaction mixture 

was chromatographed using 2:1 hexane/CH2Cl2 to afford the desired compound with spectral 

properties idaitical to those previously reported, 

2-Methyl-3-phenyl-l-lndenone and 2-Phenyl-3-metliyI-l-indenone 

(Entries 3 and 4, Table 1). The reaction mixture was chromatographed using 15:1 
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hexane/EtOAc to yield a 1:1 mixture of phenylmethylindenones with spectral properties 

idaitical to those previously reported. ̂ 2 

2,3-Di-«-propyI-l-indenone (Entry 5, Table 1). The reaction mixture was 

chiomatc^raphed using 25:1 hexane/EtOAc to yield a yellow oil: iH NMR (CDCI3) 6 0.93 (t, J 

= 7.5 Hz, 3 H, CH3), 1.03 (t, J= 7.5 Hz, 3 H, CH3), 1.49 (sextet, 7= 7.5 Hz, 2 H, CH2), 

1.64 (sextet, 7= 7.5 Hz, 2 H, CH2), 2.23 (t, J= 7.5 Hz, 2 H, CH2), 2.51 (t, J= 7.5 Hz, 2 

H, CH2), 7.02 (d, /= 7.2 Hz, 1 H, aryl), 7.13 (t, 7= 6.9 Hz, 1 H, aryl), 7.2-7.4 (m, 2 H, 

aryl); 13C NMR (COas) 5 14.2, 14.5, 21.2, 22.5, 24.8, 28.2, 118.9, 121.8, 127.8, 131.1, 

133.1, 134.7, 145.8, 157.6, 198.5; IR (neat) 1703 (C=0) cm"l; mass spectrum m/z 214.1356 

(calcdforCisHigO, 214.1358). 

2-n-Propyl-3-propylidene-l-indanone (Entry 5, Table 1). The structure of 

this apparently unstable compound was tentatively assigned based on the ^H NMR q)ectrum of 

the crude product mixture. It possesed an Rf slightly lower than that of the indenone and 

partially decomposed to a red, very low Rf material during chromatogr^hy.  ̂The isolated 

compound was contaminated with a small amount of the corresponding indanone and the yield 

is based on GC measurements. 

2-/fir/-Butyl-3-methyl-l-indenone (Entry 6, Table 1). The reaction mixture 

was chromatographed using 25:1 hexane/EtOAc to yield the deared compound with spectral 

properties identical to those previously reported. ̂ 2 

2-/er/-ButyI-3-methylidene-l-indanone (Entry 6, Table 1). ^HNMR 

(CDQs) 6 1.00 (s, 9 H, CH3), 2.82 (s, 1 H, CH), 5.28 (s, 1 H, vinyl), 5.87 (d, 7= 1.2 Hz, 

1 H, vinyl), 7.40 (t, 7= 7.8 Hz, 1 H, aryl), 7.60 (t, 7= 7.2 Hz, 1 H, aryl), 7.72 (m, 2 H, 

aryl); 13CNMR(CDC13) 6 28.1, 35.2, 61.1, 109.7, 120.5, 122.9, 128.9, 134.6, 137.3, 

143,3, 149.9, 205.2; IR (CHCI3) 1710 (C=0) cm"^; mass spectrum m/z 200.1200 (calcd for 

C14H16O, 200.1201). 
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2-fert-Butyl-3-phenyl-l-indenone (Entry 7, Table 1). The reaction mixture 

was chromatographed using 15:1 hexane/EtOAc to yield a yellow solid (mp 114-116 ^C, from 

n-hexane): IH NMR (CDQs) 6 1.16 (s, 9 H, CH3), 6.47 (d, 7= 7.2 Hz, 1 H, aryl), 7.0-7.6 

(m, 8H,aryl); 13C NMR (CDCI3) 5 30.6, 33.6, 120.3, 121.7, 127.8, 128.03, 128.08, 

128.1, 129.8, 133.3, 135.3, 141.4, 147.6, 153.9, 198.4; IR (0103) 1699 (C=0) cm-i; 

mass spectram m/z 262.1362 (calcd for CigHigO, 262.1358). 

3-Phenyl-2-(trimethyIsilyl)-l-indenone (Entry 8, Table 1). The reaction 

mixture was chromatogr^hed using 15:1 hexane/EtOAc to yield an orange oil: NMR 

(0x33) 6 0.05 (s, 9 H, OIs), 6.87 (d, 7= 6.6 Hz, 1 H, aryl), 7.2-7.6 (m, 8 H, aryl); 

NMR (0X33) 5 -0.15, 120.7, 122.1, 127.5, 128.3, 129.00, 129.04, 132.2, 132.9, 134.6, 

134.8, 147.1, 170.6, 201.6; IR (OiOa) 1697 (GO) cm'̂ ; mass spectrum m/z 278.1126 

(calcd fOTCisHisOSi, 278.1127). 

3-(l-CyclohexenyI)-2-(trimethylsilyl)-l-indenone (Entry 9, Table 1). 

The reaction mixture was chromatographed using 25:1 hexane/EtOAc to yield a yellow oil: ̂ H 

NMR (OX:i3) 6 0.23 (s, 9 H, 013), 1.75 (m, 4 H, Ol2), 2.2 (m, 4 H, 012), 5.78 (m, 1 H, 

vinyl), 7.02 (d, 7= 7.2 Hz, 1 H, aryl), 7.20 (dt, 7 = 0.9, 6.9 Hz, 1 H, aryl), 7.31 (dt, 7= 

1.2, 6.6 Hz, 1 H, aryl), 7.40 (d, 7= 6.9 Hz, 1H, aryl); NMR (OXb) 5 -0.05, 21.8, 

22.3, 24.9, 28.1, 120.2, 121.8, 126.6, 128.7, 132.2, 132.5, 132.8, 133.3, 146.6, 173.7, 

202.2; IR (neat) 1697 (OO) cm"^; mass spectrum m/z 282.1437 (calcd for Ci8H220Si, 

282.1440). 

2-(l-Hydroxy-l-methylethyI)-3-phenyl-l-indenone (Entry 10, Table 1). 

The reaction mixture was chromatographed using 4:1 hexane/EtOAc to yield an orange-yellow 

soUd (mp 103-104 oC, from n-hexane): iH NMR {CDCh) 6 1.35 (s, 6 H, Oi3), 4.00 (s, 1 

H, OH), 6.64 (d, 7= 6.9 Hz, 1 H, aryl), 7.1-7.6 (m, 8 H, aryl); 13C NMR (€003) 6 30.5, 

71.1, 121.2, 122.4, 127.3, 128.5, 128.5, 128.6, 129.7, 133.5, 133.9, 138.3, 146.7, 153.9, 
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199.6; IR (CHQa) 3500 (OH), 1697 (C=0) cm"^; mass spectrum m/z 264.1145 (calcd for 

CisHieOz, 264.1150). This reaction gave a 55% isolated yield when run on a 5.0 mmol scale. 

2-^e^^Butyl-3-(^e^^butylethynyl)-l-indenone (Entry 11, Table 1). The 

reaction mixture was chromatographed using 25:1 hexane/EtOAc to yield an orange solid (mp 

95-97 oC, from ethanol): iH NMR (COas) 6 1.37 (s, 9 H, CH3), 1.40 (s, 9 H, CH3), 7.1-

7.4(m,4H,aryl); 13C NMR (CDQs) 6 29.0, 29.6, 30.4, 33.9, 74.1, 118.2, 119.5, 121.2, 

128.3, 130.0, 133.4, 135.9, 144.0, 145.8, 197.9; IR (CJJCla) 1697 (C=0) cm'i; mass 

spectrum m/z 266.1667 (calcd for C19H22O, 266.1671). 

2-(p-MethoxyphenyI)-3-phenyI-l-indenone and 3-(p-Methoxyphenyl)-2-

phenyl-l-indenone (Entry 12, Table 1). The reaction mixture was chromatogr^hed 

using 4:1 hexane/EtOAc to yield a 1:1 mixture of indenones with spectral properties identical 

to those previously reported.^® 

2,3-Diphenyl-6-methoxy-l-indenone. This compound was isolated in 71% yield 

after 30 h from the reaction of 2-bromo-5-methoxybenzalddiyde with diphaiylacetylene using 

procedure A. The reaction mixture was chromatogr^hed using 2:1 hexane/CH2Cl2 to yield the 

desired compound with spectral properties identical to those previously reported.̂  ̂

3-Phenyl-l-indenone. 3-Phenyl-2-trimethylsilyl-l-indenone (44 mg, 0.158 mmol) 

and AlQs (23 mg, 0.172 mmol) were stirred in 5 ml of CH2Q2 (dried over 4 A sieves) at 0 

under N2 and the temperature was raised to rt after 3.5 h. After 6 h, water was added and the 

reaction mixture was extracted with ether. The ether solution was dried over MgS04, and 

concentrated. The residue was chromatogr^hed using 15:1 hexane/EtOAc to yield 68% of the 

desired compound as an orange-yellow oil: iH NMR (GDQa) 6 6.01 (s, 1 H, vinyl), 7.26-7.7 

(m,9H,aryl); 13C NMR (CDQs) 6 121.5, 122.6, 122.9, 127.3, 128.9, 129.2, 130.4, 

132.3, 132.8, 133.0, 143.9, 162.7, 197.0; IR (CHQa) 1699 (C=0) cm"^; mass spectrum m/z 

206.0727 (calcd for C15H10O, 206.0732). 
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2-Bromo-3-phenyl-l-indenone. 3-Hienyl-2-triniethylsilyl-l-indenone (61 mg, 

0.219 mmol) and NBS (78 mg, 0.44 mmol) were refluxed in 5.5 ml of CH2CI2 (dried over 4 

A sieves) for 52 h. The reaction mixture was concentrated, ether was added to the mixture, and 

the residual solid was decanted. The solvent was removed unto reduced pressure and the 

residue was chromatographed using 15:1 hexane/EtOAc to yield 48.9 mg (79%) of the desired 

compound as an orange solid (mp 112-113 oC, from «-hexane): IH NMR (CIXls) 6 7.1-7.7 

(m,9H,aryl);i3cNMR(CDa3)6 117.9, 121.2, 123.6, 128.1, 128.6, 128.8, 129.8, 

130.2, 131.0, 133.7, 144.4, 156.7, 189.7 ; IR (QICls) 1717 (C=0) cm'̂ ; mass spectrum m/z 

283.9835 (calcd for Ci5H90Br79, 283.9837). 
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CHAPTER 2: SYNTHESIS OF ISOCOUMARINS AND a-PYRONES VIA 

PALLADIUM-CATALYZED ANNULATION OF INTERNAL ALKYNES 

A paper to be submitted to the Journal of Organic Chemistry 

Richard C. Larock and Mark J. Doty 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

A number of 3,4-disubstituted isocoumarins and a-pyrones have been prepared in good yields 

by treating halogen- or triflate- containing aromatic and a, P-unsaturated esters respectively, 

with internal alkynes in the presence of a palladium catalyst Synthetically, the methodology 

provides an especially simple and convenient, regjoselective route to isocoumarins and a-

pyrones containing aryl, sUyl, ester, tert-zSkyl and other hinctered groups. The reaction is 

believed to proceed though a seven-membered palladacyclic salt in which the legiochemistry of 

the reaction is controlled by steric factors. 

Introduction 

Isocoumarins! and a-pyrones^ are useful intermediates in the synthesis of a variety of 

important hetero- and carbocyclic molecules, including isocaibostyrils, isoquinolines, 

isochromenes, pyridones, and various aromatic compounds. These carbon ̂ letons also occur 



www.manaraa.com

22 

as structural subunits in numerous natural products that exhibit a wide range of biological 

activi1y.3.4 

Although traditional approaches to the synthesis of these ring systems have been 

diverse,̂ '® a number of organometallic approaches utilizing palladium have been reported over 

the last few years. Isocoumarins have been prepared by the o/r/ia-thallalion of benzoic acids 

and subsequent palladium-catalyzed olefination using simple olefins, allylic halides and vinylic 

halides or esters (eq. 1).^ Unsubstituted or 3-substituted isocoumarins have been prepared by 

the palladium-catalyzed coupling of 2-halobenzoate esters or 2-halobenzonitriles with alkenes,  ̂

vinylic stannanes,  ̂or terminal allqrnes,̂ ® subsequent cyclization, or 7r-allylnickel cross-

coupling and palladium-catalyzed cyclization (Scheme 1). Attempts to couple o-iodobenzoic 

add and terminal allsynes produced unsaturated phthalides as major products and only minor 

amounts of the 3-substituted isocoumarins (eq. 2)A^ 

O O O 

(1) 

O n O 

cat. PdCl2(PPtT3)2 
cat. Cui, EtsN 

R 

(2) 

major minor 

a-Pyrones have been synthesized by the cyclization of open chain penta-2,4-dienoic 
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Scheme 1 
O 

X = H, OEt 

O O 

•0R1 
I J I J A 

adds using lithium chloiopalladite (eq. 3)^3 or formed as unstable multi-insertion products 

ftom the reaction of palladium complexes with internal alkynes.̂ "  ̂

In 1989 Heck reported the direct formation of 3,4-diphenylisocoumarin in 56% yield 

fixjm the palladium-catalyzed coupling of methyl 2-iodobenzoate and diphenylacetylene 

(eq. 4).15 Di-j3-anisylacetylene and 1-phenyl-l-hexyne afforded only 38% and 29% yields 

respectively of the corresponding isocoumarins. Because of our own interest in this type of 

annulation process, we have explored the scope and limitations of this chemistry and now 

O 

LiPdCIs 
(3) 
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O 2 % Pd(0Ac)2, 4 % P(o-tol)3 O 

"OMe + 2.2 Ph 
0.3 % EtsN, 1 NaOAc 

Ph :: 
5 ml DMF, 100 
2.5 mmol, 56 % 

Ph 
Ph 

wish to rqport reaction conditions for the synthesis of a variety of 3,4-disubstituted 

isocoumarins and extention of this process to the synthesis of a-pyrones. 

Results and Discussion 

We have developed a simple procedure for the annulation of internal allqraes by 

appropriate halogai- or triflate substituted esters as shown below (eq. 5). Our results using this 

A = I, Dr, U IT 

procedure for the synthesis of isocoumarins and a-pyrones are summarized in Table 1. 

Isocoumarins can be prepared from eiflier o-iodo- or o-bromobenzoate esters, although 

the o-iodobenzoate esters generally provide shorter reaction times and higher yields (entries 1 

and 2, Table 1). The conesponding aryl triflate was also reacted with similar alkynes under 

these same conditions, but faled to produce any isocoumarin product, even after 6 days (entry 

3, Table 1). Surprisingly, the nature of the R group on the ester had very little effect on the 

reaction rate or product yield as shown in equation 6. Even the neopentyl, phenyl, and 

O n 
5 % Pd(0Ac)2 
1 equiv Na2C O3 (5) 
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Table 1. Synthesis of Isocoumarins and a-Pyrones Via Annulation of Internal Alkynes (eq. 5)^ 

entry ester alkyne solvent time(h) procluct(s) yield (%)^ 

1 

2 

3 

c5 

X = l 

X = Br 

X = OTf 

OMe 
CH3-=-C(CH3)3 DMF 

24 

96 

144 

C(CH3)3 
CHa 

72 

31 

0 

4 Ptl-=-C(CH3)20H DMF 40 77 

C(CH3)20H 
Ph 

Et- DMF 48 63 
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6 Ph-=-Si(CH3)3 CH3CN 

7 = Si(CH3)3 CH3CN 

8 /7-C4H9-=-Si(CH3)2(f-Bu) DMF 

9 CH3-=—Si{/-Pr)3 DMF 

Si(CH3)3 

84 

Si(CH3)3 
51 

30 72 

Si(CH3)2(f-Bu) 
n-C4H9 

24 76 

Si(/-Pr)3 
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10 Ph-^-Ph CHaCN 

O 
MeO, 

Me 

MeO-

"OMe 

O 

•OMe 

13 X = Br 

14 X = OTf 

CH3-S—C(CH3)3 DMF 

Ph-^-C(CH3)20 H DMF 

Ph-s-C(CH3)20 H DMF 

O .̂ 
Ph 

74 

MeO 
76 

C(CH3)3 

•C{CH3)20H M 6O2C 

^C{CH3)20H 
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15 I II CH3-^C(CH3)3 DMF 

HO 

16 Et = V > DMF 

O 

17 / Ph^s—Ph DMF 

'Br 

18 Ph-^-C OaEt DMF 

48 65 

C(CH3)3 

O 

OH 

O 

Fh 

O 

COaEt 
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19 Q^OE. CH3-s-Si(/-Pr)3 DMF 21 ' 64 

^OTf 
Si{/-Pr)3 

^ See the text and Experimental Section for the detailed procedures. Yields refer to isolated compounds purified by 

chromatography. ° 10 % Pd(0Ac)2 was used. ''Two equivalents of base were used. 
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O O 

'OR DMF 
+ 2 CH3-=-C{CH3)3 —— 

1 d 
'C(CH3)3 

(6) 

CHs 

R = Me, 72 %; Et, 68 %; i-Pr, 71 %; f-Butyl, 82 %; neopentyl, 64 %; phenyl, 75 % 

/err-butyl o-iodob»)zoate esters cyclized in approximately the same time and yield as the 

corresponding methyl est .̂ It is necessary to use an ester in the annulation [nocess, as 

attempted annulation uang the parent carboxylic add, o-iodob«izoic add, resulted in 

dis^ypearance of the starting material and formaticm of only a trace amount of the desired 

product 

In contrast to the isocoumarin chemistry, a-pyrones can be prq)ared in good yield 

from dther substituted (Z)-2-hromo- or (Z)-2-trifIuoromethylsulfonyloxycycloalk-l-€ne-l-

carboxylate esters (entries 13 and 14, Table 1). The latter are conveniaitly prepared from the 

corresponding P-keto estors. Interestingly, the a-pyrone annulation process seems to be 

limited to cyclic starting materials, since attempted annulation u^g acyclic vinylic iodides 

failed to produce any product It is also unclear why aryl triflates M to react under these same 

reaction conditions to produce isocoumarins, whereas a-pyrones are formed readily from 

vinylic triflates. 

Both annulation processes are highly regiosdective for allqmes containing tertiary 

alkyl, trialkylsilyl, or other hindered groiq)s, with the major product isomar having the mwe 

sterically demanding group in the position adjacent to the heteroatom; however, high-yielding, 

clean reactions are generally Umited to these types of allgmes. Exceptions to this generality are 

annulation onto alkynes such as diphenylacetylene (entries 10 and 17, Table 1) and ethyl 

phoiylpropiolate (oitry 18, Table 1). Attempted aimulation of less substituted allies, such as 
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4-octyne, lead to complex reaction mixtures. Highly substituted naphthalene derivatives were 

also formed in some cases, such as in the reaction of l-phenyl-l-propyne and methyl 2-

iodobenzoate under slightly different reaction conditions (eq. 7). The r^ochemical assignment 

O 

•^CHa 

5 % Pd(0Ac)2 

4 N32C03 

/7-BU4NCI 
DMA, 100°C 

CH3O CHaO^O 

I 
Ph 

CH3 

,CH3 

"CHa 
Ph 

15% 

of the n^hdialene isomers was based on NMR deshielding of die methyl group by the ester 

carbonyl group in the major isomer and the assumption that the seomd alkyne insertion 

proceeds regioselectively as described in our indole synthesis. 

Alkynes containing a tenxdnal trimethylsilyl group could be annulated in good yield, 

albeit at a slower rate, by changing the solvent from dimethylformamide to ac^nitrile, if the 

alliiyne had a large aU^l group, such as phenyl or 1-cyclohexenyl, on the opposite side of the 

triple bond (ratries 6 and 7, Table 1). Gas chromatogr^hic analysis indicated that acetonitrile 

prevented desilylation of the alkyne under the reaction oHiditions. However, for similar 

alkynes having smaller alkyl groups on the opposite side of the triple bond, such as 

l-(trimethylsilyl)propyne, acetonitrile failed to prevent desilylation of die alkyne and h^ce 

resulted in low product yields. Therefore, progressively more steric hindrance had to be 

incorporated into the silyl moiety of these alkynes in order to maintain clean, high-yielding 

reactions (aitries 8 and 9, Table 1). Also, since the majority of reactions have been run on a 

0.5 mmol scale, the transformation (kpicted in entry 9 of Table 1 was increased to 5.0 mmol 

which resulted in an almost identical yield (72% versus 76%). 
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The r^iochemistry was established for the products of entries 6,^^ 97 and 19^® of 

Table 1 by comparison with known compounds following desilylation (see below). Based on 

these results, the r^ochemistry was assumed for all other products containing a tertiary 

center. The regiochemistry for the ester derivative of entry 18, Table 1 was assigned based on 

our previous annulation work.̂  

The armulation of 4,4-dimethyl-2-pentyne by P-naphthyl 2-iodobenzoate resulted in a 

73 % yield of 3-<CTt-butyl-4-methylisocoumarin and recovery of 53 % of P-naphthol. Based on 

Scheme 2 

Pd(0) Pd(0Ac)2 

OR X OR X 

+ ROH + HX 
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these results, we believe that this annulation process proceeds as shown in Scheme 2 by a 

sequence involving (1) reduction of Pd(0Ac)2 to the actual catalyst Pd(0), (2) oxidative 

addition of the starting halide or triflate to Pd(0), (3) aryl- or vinylpalladium coordination to the 

allcyne and then insertion of the allsyne to form a vinylpalladium intermediate, (4) attack of the 

carbonyl oxygen on the vinylpalladium intermediate to form a seven-membered palladacyclic 

salt, and (5) regeneration of the Pd(0) catalyst by reductive elimination and formation of the 

salt Lost of the R group of the ester is thought to occur diiring the aqueous workup, since the 

p-n^hthyl ester should preclude flie lost of the R group via an SnI or Sn2 type process and 

P-naphthol is actually isolated; however, it is still unclear whether this same mechanism 

operates throughout the entire range of different R groups where the onium salt can also break 

down to the observed lactone and the corresponding organic halide by SnI or Sn2 processes. 

Although the process is limited to the annulation of hindered internal alkynes, the 

methodology proves to be very convenient and general for the synthesis of 4-substituted 

isocoumarins or bicyclic a-pyrones via the silylated products, as the silyl moiety can readily be 

O O 

Si(CH3)3 
n-Bu4NCI, rt, 1 d 

KF.2H2O 

H 

(8) 

Ph Ph 

90 % 

O O 

n-Bu4NCI, rt, 1 d 
Si(/-Pr)3 

(9) 

CHs CH3 

8 5 %  
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cleaved at room temperature in the presence of potassium fluoride dihydrate and tetra-n-

butylammonium chloride (eqs. 8 and 9).i9 

In conclusion, a useful synthesis of 3,4-disubstituted isocoumarins and bicyclic 

a-pyrones has been developed using the palladium-catalyzed annulation of internal allqmes via 

appropriate halogen- and/or triflate- substituted esters. The procedure utilizes readily available 

starting materials. The reactions proceed under relatively mild conditions, and give good 

yields. Although the reaction is somewhat limited in scope synthetically, it is particularly suited 

for the synthesis of the 4-substituted ring systems via the corresponding silyl alkynes. 

Experimental Section 

General. All and NMR q)ectra were recorded at 300 and 75.5 MHz 

respectively. Thin-layer chromatogr^hy (TLQ was preformed using commercially prepared 

60 mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm), or basic KMn04 solution [3 g KMn04 + 20 g K2CO3 + 5 ml 

NaOH(5%) + 300mlH20]. 

Reagents. All reagents were used directly as obtained commercially unless otherwise 

noted. Anhydrous Na2CC)3, liCl and KF-H20 were purchased firom Fisha* Scientific. Tetra-/i-

butylammonium chloride was purchased from Lancaster Synthesis, Inc. All palladium 

compounds were donated by Johnson Matthey, Inc. and Kawaken Fme Chemicals Co., Ltd. 

l-Phenyl-2-(trimethylsilyl)acetylene, l-(triisopropylsilyl)propyne, and l-(l-cyclohexenyl)-2-

(trimethylsilyl)acetylene were obtained from Aldrich Chemical Co., Inc. Methyl 2-

iodobenzoate, ethyl 2-iodobenzoate, 4,4-dimethyl-2-paityne, 4-phenyl-2-methyl-3-butyn-2-ol, 

and l-(l-butynyl)cyclohexanol wctc purchased from Farchan Scientific Co. Diphenylacetylene 

and ethyl pheaylpropiolate were purchased from Eastman Kodak Co. Dimethyl 

iodoterq)hthalate and 4,5-dimethoxybenzoic acid were purchased firom Trans World 
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Chemicals, Inc. The following starting materials were prepared using literature procedures: 1-

(«e/t-butyldimethylsilyl)-l-hexyne20 methyl (Z)-2-bromocyclohex-l-ene-l-carboxylate2i 

methyl (Z)-2-biomocyclohept-l-ene-l- carboxylate,^! methyl 2-trifluoromethanesulfonyloxy-

1-cyclohexaie-l-carboxylate,22 ethyl 2-trifluoiDmethanesulfonyloxy-l-cyclopaitaie-l-

caiboxylate,22 and methyl 2-(trifluoromethanesulfonyloxy)benzoate.23 The following starting 

materials were prepared. 

Isopropyl 2-iodobenzoate. 2-Iodobenzoic acid (5 g, 20 mmol), 20 ml of isoprppyl 

alcohol, and 2 ml of conc, H2SO4 were refluxed for 8 h. The reaction was poured into 50 ml 

of cold water and extracted with ether (3 x 20 ml). The organic phase was washed with water 

(2 X 20 ml), 5% NaHCOs (2 x 20 ml), brine (2 x 20 ml), and dried over MgS04. Removal of 

the solvent afforded 4.78 g (82%) of the desired product: NMR (QDCI3) 6 1.39 (d, J = 6.6 

Hz, 6 H, CH3), 5.26 (septet, /= 6.6 Hz, 1 H, CH), 7.10 (dt, 7= 1.5, 7.8 Hz, 1 H, aryl), 

7.37 (dt, 7= 0.9, 7.5 Hz, 1 H, aryl), 7.75 (dd, 7= 1.5, 7.8 Hz, 1 H, aryl), 7.95 (dd, 7= 0.9, 

7.8 Hz, 1 H,aryl); 13CNMR (CDCI3) 6 21.7, 69.3, 93.6, 127.6, 130.4, 132.1, 135.7, 

140.9,166.0; IR (neat) 1726 (OO) cm'l; HRMS m/z 289.9800 (calcd for CioHnI02, 

289.9804). 

The hindered 2-iodobenzoate esters and methyl 4,5-dimethoxy-2-iodobenzoate were 

prepared using the procedure of Neises and Steglich.24 

tert-Butyl 2-iodobenzoate. Obtained in 65% yield: ^H NMR (CDQa) 6 1.62 (s, 9 

H, CHs), 7.07 (dt, 7= 1.5, 7.5 Hz, 1 H, aryl), 7.34 (dt, 7= 0.6, 7.5 Hz, 1 H, aryl), 7.66 

(dd, 7= 1.5,7.8 Hz, 1 H, aryl), 7.9 (dd, 7 = 0.6,7.8 Hz, 1 H, aryl); NMR (CDCI3) 5 

28.0, 82.5, 127.7, 130.3, 131.8, 137.2, 140.8(2), 166.0; IR (neat) 1726 (C=0)cm-i; HRMS 

m/z 303.9952 (calcd for C11H13IO2, 303.9960). 

Neopentyl 2-iodobenzoate. Obtained in 79% yield: ^H NMR (CDCI3) 6 1.04 (s, 9 

H, CH3), 4.04 (s, 2 H, CH2), 7.10 (dt, 7= 1.5, 7.8 Hz, 1 H, aryl), 7.40 (t, 7= 7.5 Hz, 1 H, 

aryl), 7.80 (dd, 7= 1.8, 7.5 Hz, 1 H, aryl), 8.0 (d, 7= 7.8 Hz, 1H, aryl); I3c NMR (0X33) 
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6 26.5, 31.4, 74.8, 93.9, 127.7, 130.6, 132.3, 135.2, 141.1, 166.3; IR (neat) 1736 (C=0) 

cm-i; HRMS m/z 318.0118 (calcd for C12H15IO2, 318.0017). 

Phenyl 2-iodobenzoate. Obtained in 85% yield: NMR (GDCI3) 6 7.1-8.2 (m, 9 

H,aryl);i3CNMR(CDa3)6 94.5, 121.4, 126.0, 127.9, 129.4, 131.3, 133.1, 134.0, 

141.3, 150.5, 164.7; IR (neat) 1745 (C=0) cm-l; HRMS for daughter ion |M-OPh]+ m/z 

230.9312 (calcd for C13H9IO2, 230.9307). 

P-Naphthyl 2-iodobenzoate. Obtained in 78% yield: NMR (OXIls) 6 7.1-8.5 

(m, llH,aryl);i3CNMR(CDCl3)B 94.6, 118.6, 120.9, 125.8, 126.6, 127.7, 127.8, 

128.0, 128.1, 129.4, 131.5, 133.2, 133.6, 134.0, 141.6, 148.2, 164.9; IR (CHCI3) 1742 

(OO) cm-i; HRMS m/z 373.9795 (calcd for C17H11IO2, 373.9804). 

Methyl 4,5-dimethoxy-2-iodobenzoate. Obtained in 76% yield: ̂ HNMR 

(CDQs) 6 3.89 (s, 3 H, CH3), 3.90 (s, 6 H, CH3), 7.35 (s, 1 H, aryl), 7.41 (s, 1 H, aryl); 

l3CNMR(CDa3)5 51.8, 55.6, 55.8, 84.3, 113.3, 123.2, 125.4, 148.1, 151.4, 165.2; IR 

(CHQs) 1719 (C=0) cm-i; HRMS m/z 321.9703 (calcd for C10H11IO4, 321.9702). 

General Procedure for the Palladium-Catalyzed Formation of 3,4-

Disubstituted Isocoumarins and a-Pyrones. Pd(OAc)2 (6 mg, 0.027 mmol), the base 

(0.5 mmol xmless otherwise noted), LiQ (22 mg, 0.52 mmol), the ester (0.5 mmol), and the 

alkyne (1.0 mmol) were placed in a 4 dram vial. The appropriate solvent was added (10 ml) 

and the vial was heated in an oil bath at 100 °C for the necessary period of time. The reaction 

was monitored by TLC to establish completion. The reaction mixture was cooled, diluted with 

ether, washed with saturated NH4CI, dried over anhydrous MgS04, and filtered. The solvent 

was evaporated under reduced pressure and the product was isolated by chromatography 

(w-hexane/EtOAc) on a silica gel column. The following compounds were prepared by the 

above procedure. 
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3-ferf-ButyI-4-methylisocoumarin (entries 1-3, Table 1). The reaction 

mixture was chromatographed using 15:1 n-hexane/EtOAc to yield a white solid (mp 94-96 oC, 

from n-hexane): IH NMR (CDaa) 6 1.46 (s, 9 H, CH3), 2.34 (s, 3 H, CH3), 7.45 (dt, J= 

0.9, 7.8 Hz, 1 H, aryl), 7.56 (d, 7= 8.1 Hz, 1 H, aryl), 7.73 (dt, 7= 1.2, 8.1 Hz, 1 H, aryl), 

8.10 (dd, 7= 0.9,7.8 Hz, 1 H, aiyl); 13C NMR (CDOs) 6 12.9, 29.6, 37.2, 107.3, 120.1, 

122.4, 127.0, 129.1, 134.3, 139.8, 159.2, 162.5; IR (CHCI3) 1720 (OO) cm-i; HRMS ra/z 

216.1150 (calcd for C14H16Q2, 216.1150). 

3-(l-Hydroxy-l-inethylethyl)-4-phenylisocouniarin (entry 4, Table 1). 

The reaction mixture was chromatogn^hed usiag 4:1 n-hexane^tOAc to yidd a white solid 

(mp 129-130 oC, from n-hexane): iH NMR (CDCI3) 6 1.47 (s, 6 H, CH3), 2.08 (s, 1 H, 

OH), 6.80 (d, 7= 8.1 Hz, 1 H, aryl), 7.20-7.60 (m, 7 H, aryl), 8.31 (d, 7= 7.8 Hz, 1 H, 

aiyl); I3c NMR (CDQa) 6 29.8, 73.3, 114.2, 119.8, 125.2, 127.8, 128.2, 128.7, 129.5, 

130.6, 134.2, 134.5, 139.5, 156.7, 161.7; IR (CHCb) 3587 (OH), 1716 (C=0) cm'i; HRMS 

m/z 280.1097 (calcd for C18H16O3, 280.1099). 

4-Ethyl-3-(l-hydroxycycIohexyl)isocoumarin (entry 5, Table 1). The 

reaction mixture was chromatographed using 8:1 /i-hexane/EtOAc to yield a white solid (mp 

151-153 oC, from n-hexane/EtOAc): ^HNMR (0X^3) 5 1.23 (t, 7= 7.2 Hz, 3 H, CH3), 

1.60-2.16 (m, 10 H, CH2), 2.18 (s, 1 H, OH), 3.07 (q, 7= 7.2 Hz, 2 H, CH2), 7.45 (t, 7= 

7.2 Hz, 1 H, aryl), 7.62 (d, 7= 8.1 Hz, 1 H, aryl), 7.73 (t, 7= 8.1 Hz, 1 H, aryl), 8.27 (d, 7 

= 8.1 Hz, IH, aryl); "C NMR (CDCI3) 6 15.0, 18.4, 21.4, 25.0, 36.1, 75.0, 115.1, 120.6, 

123.1, 127.3, 129.4, 134.4, 138.6, 156.8, 162.2; IR (CHQs) 3455 (OH), 1711 (C=0) cm-i; 

HRMS m/z 272.1405 (calcd for Ci7H2oC^, 272.1412). 

4-Phenyl-3-(trimethylsilyI)isocouniarin (entry 6, Table 1). The reaction 

mixture was chromatographed using 38:10:1.5 n-hexane/CH2Cl2/EtOAc to yield a white solid 

(mp 159-160 °C, from n-hexane/EtOAc): ^H NMR (0)03) 6 0.01 (s, 9 H, CH3), 6.94 (d, 7 

= 7.8 Hz, 1 H, aryl), 7.2-7.7 (m, 7 H, aryl), 8.34 (d, 7= 7.5 Hz, 1 H, aryl); NMR 
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(0X33)6 -1.4, 121.1, 124.8, 128.4, 128.5 (2), 128.8, 129.1, 131.2, 134.2, 134.4, 137.5, 

160.6, 163.3; IR (CHOs) 1719 (0=0) cm-l; HRMS m/z 294.1079 (calcd for CigHisQzSi, 

294.1076). 

4-(l-Cyclohexenyl)-3-(trimethyIsilyI)isocoumarm (entry 7, Table 1). 

The reaction mixture was chromatographed using 38:10:1.5 n-hexane/Qi2Q2/EtOAc to yield a 

white solid (mp 89-91 °C, from w-hexane): NMR (ODOa) 5 0.27 (s, 9 H, CH3), 1.60-2.4 

(m, 8 H, CH2), 5.73 (bs, 1 H, vinyl), 7.30 (d, /= 8.1 Hz, 1 H, aryl), 7.43 (t, / = 7.5 Hz, 

1 H, aryl), 7.63 (t, J= 7.5 Hz, 1 H, aryl), 8.24 (d, J= 8.1 Hz, 1H, aryl); NMR (CDCI3) 

5 -0.7, 21.6, 22.5, 25.4, 30.5, 121.6, 124.1, 128.1, 129.2, 130.6, 130.9, 131.9, 134.1, 

136.7, 158.9, 163.3; IR (CHCI3) 1723 (OO) cm-i; HRMS m/z 298.1387 (calcd for 

Ci8H22Q2Si, 298.1389). 

4-n-ButyI-3-(/«r^butyldiniethylsilyl)isocoumarin (entry 8, Table 1). The 

reaction mixture was chromatographed using 15:1 n-hexane/EtOAc to yield a clear oil: ̂ H 

NMR (0X13) 6 0.39 (s, 6 H, 013), 1.0 (s, 12 H, CH3), 1.53 (m, 4 H, CH2), 2.65 (t, J= 

6.9 Hz, 2 H, CH2), 7.51 (m, 2 H, aryl), 7.75 (t, 7 = 7.2 Hz, 1 H, aryl), 8.30 (d, 7= 7.8 

Hz, 1H, aryl); NMR (0003) 6 -4.3, 13.9, 17.8, 23.1, 26.7, 27.8, 33.0, 121.8, 122.9, 

126.9, 128.1, 129.5, 134.1, 136.4, 158.3, 163.1; IR (CHQa) 1719 (C=0) cm-l; HRMS m/z 

316.1861 (calcd for Ci9H28Q2Si, 316.1859). 

4-Methyl-3-(triisopropylsilyl)isocouniarin (entry 9, Table 1). The reaction 

mixture was chromatographed using 15:1 n-hexane/EtOAc to yield a white solid (mp 112-114 

oC, from n-hexane): iHNMR(0)03) 6 1.17 (d, 7= 7.5 Hz, 18 H, 013), 1.51 (septet, 7= 

7.5 Hz, 3 H, OI), 2.28 (s, 3 H, 013), 7.53 (m, 2 H, aryl), 7.76 (t, 7 = 7.0 Hz, 1 H, aryl), 

8.34 (d, 7= 7.5 Hz, 1 H, aryl); NMR (OXlls) 6 12.2, 14.3, 18.6, 121.3, 122.2, 122.7, 

128.2, 129.1, 134.2, 137.3, 157.9, 163.4; IR (CHO3) 1721 (C=0) cm-l;HRMS m/z 

316.1860 (calcd for Ci9H2802Si, 316.1859). 
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3,4-DiphenyIisocoumarin (entry 10, Table 1). The reaction mixture was 

chromatographed with 12:6:0.5 n-hexane/CH2Q2/EtOAc, followed by 15:1 hexane/EtOAc (mp 

169-171 °C, from n-hexane; lit^  ̂mp 168.5-170 "C) to give the desired compound whose 

spectral properties were identical with those previously reported. 

3-/er^ButyI-6,7-dimethoxy-4-methylisocoumarin (entry 11, Table 1). 

The reaction mixture was chromatographed with 2:1 n-hexane/EtOAc to yield a solid (mp 127-

128 °C, from n-hexane): iR NMR (CDOs) 6 1.35 (s, 9 H, CH3), 2.23 (s, 3 H, CH3), 3.87 

(s, 3 H, CHb), 3.91 (s, 3 H, CH3), 6.80 (s, 1 H, aryl), 7.55 (s, 1 H, aryl); NMR 

(CDa3)6 13.0, 29.5, 36.8, 55.8, 55.9, 103.2, 106.8, 108.8, 113.1, 135.4, 148.5, 154.5, 

158.1, 162.1; IR(CHa3) 1705 (C=0)cm-l;HRMSM/z 276.1362 (calcd for C16H20O4, 

276.1362). 

Methyl 3-(l-hydroxy-l-methylethyl)-4-phenyl-6-isocoumarin 

carboxylate (entry 12, Table 1). The reaction mixture was chromatographed with 2:1 

n-hexane/EtOAc to yield a solid (mp 159-160 ̂ C, from n-hexane): NMR (CDCI3) 6 1.48 

(s, 6 H, CH3), 2.25 (s, 1 H, OH), 3.84 (s, 3 H, CH3), 7.31 (m, 2 H, aryl), 7.49 (m, 4 H, 

aryl), 8.05 (dd, 7= 1.2, 8.4 Hz, 1 H, aryl), 8.35 (d, 7= 8.4 Hz, 1 H, aryl); I3c NMR 

(CDa3)6 29.6, 52.4, 73.1, 114.0, 122.5, 126.4, 127.9, 128.3, 128.7, 129.1, 130.3, 

133.3, 135.2, 139.4, 157.5, 160.6, 165.4; IR (0103)3490 (OH), 1728 (C=0), 1721 (C=0) 

cm-i; HRMS m/z 338.1146 (calcd for C20H18Q5, 338.1154). 

3-(l-Hydroxy-l-methylethyl)-4-phenyl-5,6,7,8-tetrahydroisocoumarin 

(entries 13 and 14, Table 1). The reaction mixture was chromatogr^hed using 1:1 

/z-hexane/EtOAc to yield a white solid (mp 134-135 ^C, from n-hexane): ^H NMR (CIDOb) 5 

1.38 (s, 6 H, CH3), 1.5-1.8 (m, 4 H, CH2), 1.92 (bt, J= 5.7 Hz, 2 H, CH2), 2.11 (s, 1 H, 

OH), 2.50 (bt, J= 5.7 Hz, 2 H, CH2), 7.1-7.3 (m, 2 H, aryl), 7.35-7.5 (m, 3 H, aryl); 

NMR(CDCl3)6 21.1, 21.4, 23.4, 28.2, 29.5, 73.0, 116.9, 120.7, 127.8, 128.3, 130.0, 
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134.4, 152.2, 159.5, 161.9; ER (CHas) 3486 (OH), 1712 (C=0) cm-i; HRMS m/z 284.1408 

(calcdforCi8H2oQ3, 284.1421). 

3-ierf-Butyl-4-methyl-5,6,7,8-tetrahydroisocoumarin (entry 15, Table 

1). The reaction mixture was chromatographed using 4:1 n-hexane/EtOAc to yield a clear oil: 

IH NMR (CDQa) 6 1.37 (s, 9 H, CH3), 1.6-1.8 (m, 4 H, CH2), 2.03 (s, 3 H, CH3), 2.2-2.5 

(m, 4H, CH2); i3CNMR(CDa3)6 12.9, 21.1, 21.8, 23.4, 27.2, 29.1, 37.0, 110.9, 119.9, 

153.2, 161.9, 163.1; IR(CHa3) 1714 (C=0)cm-l; HRMS m/z 220.1464 (calcd for 

C14H20Q2, 220.1463). 

4-Ethyl-3-(l-hydroxycycIohexyl)-5,6,7,8-tetrahydroisocoumarin (entry 

16, Table 1). The reaction mixture was chromatographed using 4:1 n-hexane/EtOAc to yield 

a white solid (mp 169-170 oC, from n-hexane/EtOAc): ̂ H NMR (CDCI3) 6 1.11 (t, 7= 7.5 

Hz, 3 H, CH3), 1.29 (m, 2 H, CH2), 1.5-1.9 (m, 10 H, CH2), 2.0 (dt, 7= 4.5,13.8 Hz, 2 

H, CH2), 2.4 (t, 7= 5.7 Hz, 2 H, CH2), 2.5 (t, 7= 5.7 Hz, 2 H, CH2), 2.6 (s, 1 H, OH), 

2.7 (q, 7= 7.5 Hz, 2 H, CH2); NMR (CDCI3) 6 15.7, 18.2, 21.3, 21.8, 23.6, 24.9, 

25.9, 35.8, 35.9, 74.8, 118.3, 121.0, 153.2, 159.7, 162.6; IR(CHa3) 3457 (OH), 1711 

(C=0) cm-i; HRMS m/z 276.1733 (calcd for C17H24O3, 276.1725). 

3,4-Diphenyl-6,7,8,9-tetrahydrocyclohepta[c]pyran-l(5H)-one (entry 

17, Table 1). The reaction mixture was chromatographed using 8:1 n-hexane/BOAc to yield 

a white solid (mp 124-126 °C, from n-hexane): ^H NMR (CDQs) 5 1.50 (quintet, 7= 5.4 Hz, 

2 H, CH2), 1.63 (quintet, 7= 5.4 Hz, 2 H, CH2), 1.82 (quintet, 7= 5.4 Hz, 2 H, CH2), 2.4 

(m, 2 H, CH2), 2.89 (m, 2 H, CH2), 7.0-7.4 (m, 10 H, aryl); NMR (€1X33) 6 25.3, 

25.8, 26.6, 31.1, 32.1, 119.8, 126.5, 127.62, 127.69, 128.7, 128.8, 130.6, 132.7, 135.4, 

149.3, 154.4, 157.9, 163.0; ER (CHQs) 1711 (C=0) cm-i; HRMS m/z 316.1463 (calcd for 

C22H20Q2, 316.1463). 
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Ethyl 4-phenyl-6,7,8,9-tetrahydrocyclohepta[c]pyran-l-(5flf)-one-3-

carboxylate (entry 18, Table 1). The reaction mixture was chromatographed using 8:1 

«-hexane/EtOAc to yield a white-yellow solid (mp 69-71 oC, from «-hexane): NMR 

(CDQa) 6 1.08 (t, J= 7.2 Hz, 3 H, CH3), 1.64 (m, 4 H, CH2), 1.88 (m, 2 H, CH2), 2.62 

(m, 2 H, CH2), 2.84 (m, 2 H, CH2), 4.15 (q, J= 12 Hz, 3 H, CH2), 7.3-7.5 (m, 3 H, aryl), 

7.5-7.7 (m, 2 H, aiyl); i^c NMR (CDCI3) 6 14.0, 25.4, 25.8, 26.3, 31.4, 31.9, 61.7, 114.5, 

126.8, 127.5, 128.2, 130.3, 131.8, 154.2, 156.6, 161.9, 166.6; IR(CHa3) 1701 (C=0), 

1731 (C=0) cm-l; HRMS m/z 312.1354 (calcd for C19H20O4, 312.1362). 

6,7-Dihydro-4-methyl-3-(triisopropylsilyl)cyclopenta[c]pyran-l-(5H)-

one (entry 19, Table 1). The reaction mixture was chromatogr^hed using 8:1 

«-hexane/EtOAc to yield a white solid (mp 80-82 ^C, from n-hexane): ^H NMR (CDCI3) 6 

1.12 (d, J= 7.5 Hz, 18 H, CH3), 1.47 (septet, 7 = 7.5 Hz, 3 H, CH), 2.03 (s, 3 H, CH3), 

2.06 (quintet, 7= 7.5 Hz, 2 H, CH2), 2.8 (m, 4 H, CH2); NMR (CDCI3) 6 11.8, 14.5, 

18.5, 21.9, 30.0, 33.2, 123.7, 126.5, 158.9, 163.2, 164.4; IR (CHQs) 1714 (C=0) cm'l; 

HRMS m/z 306.2010 (calcd for CigHsoOzSi, 306.2015). 

4-Phenylisocoumarin. 4-Hienyl-3-(trimethylsilyl)isocoumarin (70 mg, 0.24 

mmol), KF-2H20 (68.7 mg, 0.73 mmol), tetra-n-butylammonium chloride (212 mg, 0.76 

mmol), and 1.5 ml acetonitrile were stirred for 24 h at rt. The reaction mixture was added to 15 

ml of water, extracted with CH2CI2 (2 x 15 ml), and dried over Na2S04. Removal of the 

solvent and chromatography (4:1 n-hexane/EtOAc) afforded a 90 % yield of the desired 

compound as a white solid (mp 94-95 ^C, lit '̂̂  mp 96-97 °C): ^H NMR (CDCI3) 6 7.3-7.7 

(m, 9 H, aryl), 8.39 (d, J= 8.1 Hz, 1H, aryl); 13C NMR (CDCI3) 6 120.5, 121.2, 124.5, 

128.2, 128.4, 128.8, 129.7, 129.9, 132.9, 134.6, 136.6, 142.1, 161.9; IR(CHa3) 1727 

(C=0) cm-i; HRMS m/z 222.0687 (calcd for C15H10O2, 222.0681). 

6,7-Dihydro-4-methylcyclopenta[c]pyran-l-(5H)-one. 6,7-Dihydro-4-

methyl-3-(triisopropylsilyl)cyclopenta[c]pyran-l-(5H)-one (68 mg, 0.22 mmol), KF-2H20 
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(62 mg, 0.66 mmol), tetra-n-butylammonium chloride (233 mg, 0.84 mmol), and 1.5 ml of 

acetDnitrile were stirred for 24 h at rL Removal of the solvent and chromatography (4:1 

hexane/EtOAc) afforded an 85 % yield of the desired compound as a white solid (mp 90-91 

oQ: IH NMR (CDQa) 6 1.94 (d, 7= 1.2 Hz, 3 H, CH3), 2.09 (quintet, 7= 7.8 Hz, 2 H, 

CH2), 2.79 (m, 4 H, CH2), 7.19 (bs, 1 H, vinyl); l^c NMR (CDQs) 6 12.9, 22.2, 29.9, 

32.8, 114.1, 126.4, 146.2, 160.0, 161.5; IR(CHa3) 1710 (C=0) cm-i; HRMS m/z 

150.0683 (calcd for C9H10Q2, 150.0681). 
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ndcFofihn version of the joumal, and can be ordered fix)m die ACS; see any current masthead page for ordering 

information. 
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CHAPTER 3: SYNTHESIS OF AROMATIC HETEROCYCLES VIA 

PALLADIUM-CATALYZED ANNULATION OF INTERNAL ALKYNES 

A paper submitted to the Journal of Organic Chemistry 

R. C. Larock, E. K. Yum, M. J. Doty, and K. K. C. Sham 

Department of Chemistry, Iowa State University, Ames, lA 50011 

The transition-metal mediated cycloaddition reactions of alkynes are of great current interest ̂  

While palladiimi is among the most widely studied metals for such processes,^ multiple alkyne 

insertions, or insertion and subsequent cyclization back on to a preexisting aromatic ring usually 

predominates. Rec«it success in the synthesis of indoles by the regioselective, palladium-catalyzed 

heteroannulation of internal alkynes (eq 1)  ̂ encouraged us to apply this methodology to the synthesis 

of other heterocycles. We now report that this chemistry provides a valuable new route to a 

wide variety of heterocycles, including 1,2-dihydroisoquinolines, benzofiirans, benzopyrans, 

and isocoumarins. Our preliminary results are summarized in Table I. 

In general, we have employed reaction conditions very similar to those rqx)rted earlier by 

us for the annulation of alkynes,vinylic cyclopropanes and cyclobutanes,̂  allenes^ and 1,3-

dienes.® 5 Mol % Pd(0Ac)2, plus sodium or potassiimi acetate or carbonate, in the presence of 

(1) 
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Table I, Palladium-Catalyzed Heteroamiulation of Alkynes.fl 

chloride baee temp (°C), % isolated 

entry unnulating agent (equiv) alkyne (equiv) source (equiv) PPha time (h) product(s) yield 

1 PhCsCCOgEt (2) LiCl NaOAc (2) - 100,24 

2 (1) LiCl K0Ac(2) - 100,24 80 

EtOgC 

(1) PhC=CPh(2) n-Bu^^Cl K0Ac(2) - 120,24 83 

4 (1) PhC=CM0(2) re-Bu4NCl K0Ac(2) - 100,48 68 

6 (1) rt-BujNCl Na2C03(2) + 100,48 62 

An 

(1) PhC=CCH0(2) LiCl NaOAc(2) - 100,24 f IT 66 

66 

Me 

,,AC 

^Ph 
CHO 

a!" (1) f-BuC=CM0(6) n-Bu4NCl NagCOaCe) + 100,24 eft: 

(1) (1.1) LiCl K2C03(6) + 136,24 

9:1 

o\ 



www.manaraa.com

Me 
(1) HoCscicsCEt (1.1) LiCl K2C03(6) + 

10 (1) PhCsCCOaEt (1.1) LiCl K2C03(5) + 

11 (1) ElOaCCHCCOaEtd.l) LiCl KzCOsCS) + 

12 (1.6) MeCSCSI(/-Pr)3 (1) LiCl NazCOad) 

13 (2.8) PhC=CSi(APr)3 (1) LiCl NazCOgd) 

" .xx: 
(1) f-BuC=CMe(6) n-Bu^Cl K0Ac(5) + 

.OH 

AC ^ N 

16 (1) MeC=CSI(/-Pr)3 (2) LiCl Nn2C03(l) 

Me Me 
16 f-BuC=CMe(2) LiCl Na2COs(2) -

CC 

136,24 + 

9:1 

69'' 

Me 

136,24 

135,24 

100,72 

100,604 

100,24 

100,24 

100,20 

OX-'OCX 
.COgEt 

Ph 

3:2 

ô : 
.COgEt 

COaEt 

^^0 Si(/-Pr)3 
LJ 

^Me 

Ac^ ^Me 

^0^Si(/-Pf)3 

Me. Me 

r-Bu 

69'' 

48 6 

90 

70 

75 

62 

62 

-J 

Me 
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17 (1) PhC=CPh (2) LiCl Nu2COs(2) 

18 (1) PhCSCCOjEt (2) LiCl Na2C08(2) 

9H 
19 (1) PhC=CCMe2(2) LiCl Na2C08(2) 

20 1 (1) f-BuC=CM0(2) LiCl Na2C08(l) 

H0_\ 
21 (1) EtC=C-K V2) LiCl Na2C08(l) 

OH 
22 (1) PhCSCCM02(2) LiCl Na2C08(l) 

100,24 

80,8 

Me. Mo 

M0. M0 

62 

61 

100,15 
Me. Me 

CM02 
Ph OH 

57 

100,24 
f-Bu 

72 
4  ̂
00 

100,48 63 

100,40 

(pM02 
Ph OH 

77 



www.manaraa.com

23 

24 

(1) PhC=CSIM03(2) Lid NB2C08(1) - 100,84 

(1) SCSiMe3(2) LiCl NazCOad) - 100,84 

SIMOs 

SIMea 

630 

61« 

26 (1) MeC5CSi(/-Pr)3 (2) LiCl NazCOsd) - 100,24 

SI(/.Pr)3 

76 

" Entries 1-7 were run on a 0.26 mmol scale and entries 8-25 on a 0.60 mmol scale. A representative procedure for the 0.6 mmol ecale follows: 6 mol 

% Pd(0Ac)2, aiyl iodide (0.6 mmol), n-Bu^NCl or LiCl (0.6 mmol), base (0.6,1.0 or 2.6 mmol), DMF (10 ml), and where necessary 6 mol % PPhg, were 

placed in a 4 dram vial and heated at the appropriate temperature for the indicated time. 

'> Dimethylacetamide (20 ml) was used as the solvent, 

Acetonitrile (10 ml) was used as the solvent. 
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LiQ or «-Bu4NC1, and occasionally 5 mol % PPha, in DMF as solvent generally gives the best 

results. Temperatures of 80-140 °C are necessary to effect aimulation in reasonable reaction 

times. 

We initiated our studies using o-iodobenzylamiae, but aimulation with this substrate 

proved sluggish and even at elevated temperatures only low yields of 1,2-dihydroisoquinolines 

could be obtained. By employing the corresponding acetamide, instead of the free amine, we 

were able to obtain vastly improved results (entries 1-6).  ̂ Alkynes containing aryl or 

caibonyl-containing groups gave the best results, and proved highly r^oselective. 

We next turned to oxygen nucleophiles. Heteroannulation using o-iodophenol proved 

more difficult than analogous reactions of o-iodoaniline (entries 7-13). Generally, higher 

temperatures are required and the process appears limited to hindered alkyl acetylenes or 

acetylenes bearing vinylic, aryl, caibonyl or silyl groups. At the higher temperatures required, 

reduced regioselectivity is sometimes observed. While the heteroannulation of 

4,4-dimethyl-2-pentyne by <?-iodoaniline^ and o-iodophenol (entry 7) at 100 °C gave 

exclusively 2-r-butyl-3-methylindole and 2-f-butyl-3-methylbenzofuran respectively, the 

analogous, higher-yielding reaction of o-iodophenol run at 135 °C gave a 9:1 mixture of 

regioisomers (entry 8). The aimulation of 2-methyl-l-hexen-3-yne (entry 9) and ethyl 

phenylpropiolate (entry 10) at 135 °C also afforded mixtures of r^oisomers. Hindered 

silylalkynes give high yields of the corresponding 2-silylbenzofurans (entries 12 and 13). This 

process nicely complements the palladium-catalyzed coupling of o-iodophenol and terminal 

alkynes, which affords 2-substituted benzofurans, '̂® because the silyl-substituted benzofurans 

are readily desilylated to 3-substituted benzofurans by fluoride salts (eq. 2). 

Although alcohols are not particularly good nucleophiles in palladium-based 

methodology, o-iodobenzylic alcohols have proven effective for the synthesis of benzopyrans 

(entries 16-19), best results again bdng obtained using hindered alkyl, aryl or caibonyl-

containing alkynes. 
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^Me MeCN 
60 °C, 6.5 h 

87% 

We have also examined the annulation of internal alkynes by o-iodobenzoic acid and 

derivatives. The acid itself gives only low yields of isocoumarins and many side products. 

Heck et aL have shown previously that diphenylacetylene could be annulated by methyl 

o-iodobenzoate, although the analogous reaction of 3-hexyne gave very poor results. 

Under our conditions, we have been able to achieve good yields of isocoumarins from methyl 

o-iodobenzoate and hindered alkyl-, silyl- or aryl-substituted internal alkynes (entries 20-25). 

With catain silylaUqoies, cleaner reactions could be obtained using acetonitrile as the solvent 

(entries 23 and 24), although longer reaction times were required. 

Although the regiochemistry of every product has not been rigorously established, it 

appears that these reactions follow the pattern established in our indole synthesis  ̂and prior 

alkyne addition chemistry  ̂of adding the aryl group to the less hin<tered aid of the alkyne and 

±e palladium moiety to the more hindered end. Regioselectivity is oftani high, but successful 

annulation often requires the presence of a hindered alkyl, silyl or an aryl group on the C-C 

triple bond. 

Acknowledgment. We gratefully acknowledge the National Institutes of Health for 

their generous financial support; Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., 

Ltd. for the palladium acetate; and NATO for a Collaborative Research Grant allowing valuable 

discussions with Professor Sandro Cacchi at the University of Rome, La Sapienza, Rome, 

Italy. 
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Experimental Section 

General. All and NMR spectra were recorded at 300 and 75.5 MHz 

respectively. Thin-layCT chromatography (TLQ was preformed using commericaUy prepared 

60 mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm), or basic KMn04 solution [3 g KMn04 + 20 g K2CO3 + 5 ml 

NaOH (5%) + 300 ml H2O]. 

Reagents. All reagents were used directly as obtained comm^iaUy unless otherwise 

noted. Anhydrous KOAc, K2CX)3, NaOAc, Na2C03, LiCl and KF-H20, as well as DMA, 

DMF, and Et2NH were purchased from Fisher Scientific. Tetra-n-butylammonium chloride 

was purchased from Lancaster Synthesis, Inc. All palladium compounds were donated by 

Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., Ltd. Diethyl acetylenedicarboxylate, 

1-phenyl-2-(trimethylsilyl)acetylene, l-(triisopropylsilyl)propyne, l-(l-cyclohexenyl)-2-

(trimethylsilyl)acetylene, 2-iodophenol, iodobenzene, triisopropylsilylacetylene, Cul, and 

triphenylphosphine were obtained from Aldrich Chemical Co., Inc. Methyl 2-iodobenzoate, 1-

phenyl-l-propyne, 4,4-dimethyl-2-pentyne, 4-phenyl-2-methyl-3-butyn-2-ol, 2-methyl-l-

hexene-3-yne, and l-(l-butynyl)cyclohexanol were purchased from Farchan Sciaitific Co. 

Diphenylacetylene and ethyl phenylpropiolate were purchased from Eastman Kodak Co. The 

following starting materials were prepared using literature procedures: 4-hydroxy-3-

iodoacetophenone,^2 iV-acetyl-2-iodobaizylamine,i3 and 3-phenyl-2-propynal.^3 xjje 

following starting materials were also prqpared. 

2-(2-IodophenyI)-2-propanol. Magnesium (1.15 g, 47.4 mmol) was placed in 20 

ml of dry ether. Methyl iodide (2.62 ml, 41.8 mmol) was added slowly to the flask to form the 

Grignard reagent The flask was heated for an additional 15 minutes after formation and methyl 

2-iodobenzoate (5 g, 19.08 mmol) in 10 ml ether was added. The mixture was heated at reflux 
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for an additional hour. The mixture was quenched with saturated NH4Q and 5 %  HQ, 

extracted with ether, and dried aver K2CC)3. The crude product was chromatogr^hed with 8:1 

hexane/EtOAc to yield 53% of the carbinol: iR NMR (CDCb) 6 1.76 (s, 6 H, CH3), 2.51 (s, 

1 H, OH), 6.89 (t, J= 7.8 Hz, 1H, aryl), 7.32 (t, /= 7.8 Hz, 1H, aryl), 7.62 (d, J= 7.8 

Hz, 1 H, aryl), 7.95 (d, J= 7.8 Hz, 1 H, aryl); NMR (CDCI3) 6 28.7, 73.5, 93.1, 126.6, 

128.0, 128.5, 142.6, 148.4; IR (CHCI3) 3375 (OH) cm-l; HRMS Calcd for CgHnia 

261.9855. Found: 261.9930. 

l-Phenyl-2-(triisopropylsilyI)acetylene. lodobenzene (2.5 mmol), 

triisopropylsilylacetylene (2.5 mmol), Cul (0.25 mmol), and Pda2(PPh3)2 (0.0125 mmol) 

were placed in 15 ml of EtiNH at rt for 4 d The solvent was removed undar reduced pressure 

and the crude mixture was filtered through silica gel with CH2CI2. The solvent was removed 

and the resultant oil was distilled to yield 58% of the desired alkyne: ^H NMR (CDQs) 6 1.13 

(m, 21 H, CH and CH3), 7.2-7.4 (m, 3 H, aryl), 7.4 (m, 2 H, aryl); 13c NMR (CDCI3) 6 

11.3, 18.6, 90.3, 107.2, 123.5, 128.0, 128.2, 132.0; IR (neat) 2953, 2155 cm-i;HRMS 

Calcd for Ci7H26Si: 258.1804. Found: 258.1798. 

General procedure for the palladium-catalyzed heteroannulation of 

alkynes. Palladium acetate (0.(X25 mmol), LiCl (0.50 mmol) or n-Bu4NCl (Lancaster, 0.50 

mmol), the ^prq)riate base (0.5-2.50 mmol), the aryl iodide (0.50-1.5 mmol), the alkyne 

(0.5-2.5 mmol), the solvent (10 or 20 ml) and, where indicated, PPh3 (0.025 mmol) were 

added to a 2 or 4 dram vial equipped with a stirring bar and heated at the appropriate 

temperature for the necessary period of time. The reaction mixture was diluted with ether, 

washed successively with saturated NH4CI and water, dried over anhydrous MgS04, and 

conc«itrated. The products were purified by flash column chromatography. The following 

compounds were prepared using this general procedure. 

Ethyl 2-Acetyl-l,2-dihydro-3-phenyUsoquinoline-4-carboxylate (entry 1): 

IH N M R  ( C DCI3) 6 0.92 (t, J= 12 Hz, 3 H, CH3), 1.54 (s, 3 H, CH3), 4.04 (q, J= 12 Hz, 
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2 H, CH2), 5.05 (s, 2 H, CH2), 7.26-7.60 (m, 8 H, aryl), 7.76 (d, J= 6.3 Hz, 1 H, aryl); 

13C1SIMR(CDC13)6 18.5, 24.5, 40.2, 61.1, 122.2, 123.4, 125.9, 127.7, 128.1, 128.5, 

128.7, 129.3, 129.5, 131.9, 138.9, 140.7, 167.4, 171.2; IR (CDCI3) 1717 (C=0) cin-l; 

HRMS CaIcdforC2oHi9N03: 321.1365. Found: 321.1364. 

2-AcetyI-l,2-dihydro-3,4-diphenylisoquinoline (entry 2): NMR (CDCI3) 

6 1.56 (s, 3 H, CHs), 5.17 (s, 2 H, CH2), 7.09-7.37 (m, 14 H, aryl); 13C NMR (CDCI3) 6 

24.0, 46.0, 118.1, 125.0, 125.2, 126.9, 127.2, 127.5, 127.7, 128.1, 129.6, 129.9, 130.7, 

132.8, 133.6, 136.3, 136.5, 137.2, 170.1; IR (CDCI3) 1659 (OO) cm"!; HRMS Caicdfor 

C23H19NO: 325.1467. Found: 325.1458. 

2-Acetyl-l,2-dihydro-4-methyl-3-phenylisoquinoline (entry 3); ̂ H NMR 

(CDa3) 6 1.47 (s, 3 H, CH3), 2.24 (s, 3 H, CH3), 5,00 (s, 2 H, CH2), 7.2-7.45 (m, 9 H, 

aryl); I3c NMR (CDCI3) 6 15.6, 24.1, 45.7, 122.6, 123.6, 123.7, 124.8, 127.3, 127.9, 

128.2, 129.9, 133.7, 136.1, 137.6,137.8, 171.0; IR (CDCI3) 1732 (OO) cm-i; HRMS 

CalcdforCisHnNO: 263.1311. Found: 263.1310. 

2-Acetyl-l,2-dihydro-4-formyI-3-phenylisoquinoIine (entry 4); ̂ H NMR 

(0x13) 6 1.84 (s, 3 H, CH3), 5.12 (s, 2 H, C3i2), 7.45 (m, 4 H, aryl), 7.85 (m, 4 H, aryl), 

8.51 (d, /= 7.8 Hz, 1 H, aryl), 9.75 (s, 1 H, CHO); NMR (CDCI3) 6 24.9, 48.9, 123.4, 

124.9, 125.8, 127.7, 128.0, 128.1, 128.9, 131.3, 131.7, 134.0, 140.1, 155.9, 171.1, 

190.8; IR (CDQs) 1736 (C=0) cm-l; HRMS Calcd for C18H15NO2: 277.1103. Found: 

277.1101. 

2-£-Butyl-3-methylbenzofuran (entry 7): ̂ H NMR (CDCI3) 6 1.49 (s, 9 H, 

CH3), 2.35 (s, 3 H, CH3), 7.25 (m, 2 H, aryl), 7.40 (m, 2 H, aryl); I3c NMR (CDCI3) 5 

9.0, 29.5, 34.3, 107.3, 110.3, 118.4, 121.7, 123.0, 131.5, 152.8, 159.7; IR (neat) 2961, 

1477cm-i; HRMS Caicdfor C13H160:188.1204. Found: 188.1201. 

3-Ethyl-2-isopropenylbenzofuran and 2-etliyl-3-isopropenylbenzofuran 

(9:1 mixture) (entry 9): ^H NMR (CDQa) 5 1.21 (t, 7 = 7.5 Hz, 3 H, CH3), 2.14 (s, 3 H, 
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CH3), 2.77 (q, /= 7.5 Hz, 2 H, CH2), 5.15 (s, 1 H, vinyl), 5.44 (s, 1 H, vinyl), 7.15 (m, 2 

H, aryl), 7.33 (d, J= 8.1 Hz, 1 H, aryl), 7.43 (d, J= 8.1 Hz, 1H, aryl); NMR (CDCI3) 

6 14.6, 17.6, 21.0, 110.8, 115.0, 118.0, 119.3, 122.0, 124.2, 130.0, 134.6, 151.4, 153.4; 

IR (neat) 2964,1287 cm-l; HRMS Calcd for C13H140:186.1045. Found: 186.1044. 

Ethyl 2-phenylbenzofuraii-3-carboxylate and ethyl 3-phenylbenzofuran-

2-carboxyIate (3:2 mixture) (entry 10): iHNMR (CIXls) 5 1.34 (t, /= 7.5 Hz, 6 H, 

CH3), 4.34 (q, J= 7.5 Hz, 4 H, CH2), 7.28 (m, 4 H, aryl), 7.42 (m, 10 H, aryl), 7.98 (m, 4 

H,aryl); NMR (OX^s) 5 14.2, 14.3, 14.3, 21.0, 60.3, 60.6, 111.0, 122.6, 123.9, 

125.1, 127.1, 128.0, 129.5, 129.6, 130.1, 153.7, 160.8, 163.9, 171.1; IR (neat) 1716 

(C=0) cm-i; HRMS Calcd for C17H14O3: 266.0943. Found: 266.0944. 

Diethyl benzofuran-2,3-dicarboxylate (entry 11): ^HNMR (CDCI3) 6 1.45 (t, J 

= 7.2 Hz, 6 H, CH3), 4.48 (q, J= 7.2 Hz, 4 H, CH2), 7.38 (t, J= 7.8 Hz, 1 H, aryl), 7.49 

(t, J= 7.2 Hz, 1 H, aryl), 7.59 (d, 7= 7.8 Hz, 1 H, aryl), 7.92 (d, 7= 7.8 Hz, 1 H, aryl); 

l3CNMR(CDa3)5 14.2, 14.3, 61.6, 62.2, 112.2, 118.2, 122.7, 124.6, 125.4, 127.9, 

145.6,154.0,158.8,162.5; IR (neat) 1726 (C=0) cm-i; HRMS Calcd for Ci4Hi405: 

262.0841. Found: 262.0843. 

3-Methyl-2-(triisopropylsiiyI)benzofuran (entry 12): lHNMR(CDCl3) 6 1.13 

(d, 7= 7.5 Hz, 18 H, CH3), 1.50 (septet, J= 7.5 Hz, 3 H, CH), 2.33 (s, 3 H, CH3), 7.15-

7.30 (m, 2 H, aryl), 7.44 (d, 7= 7.8 Hz, 1 H, aryl), 7.51 (d, 7= 6.9 Hz, 1H, aryl); I3c 

NMR(CDCl3)5 8.4, 11.6, 18.6, 111.0, 119.0, 121.5, 123.3, 126.3, 129.9, 155.1, 157.6; 

IR (CHa3) 2944,1461 cm-1; HRMS Calcd for Ci8H280Si: 288.1909. Found: 288.1908. 

3-PhenyI-2-(triisopropylsilyl)benzofuran (entry 13): ^HNMR (CDCI3) 6 1.02 

(d, 7= 7.5 Hz, 18 H, CH3), 1.29 (septet, 7= 7.5 Hz, 3 H, CH), 7.10-7.60 (m, 9 H, aryl); 

13CNMR(CDC13)6 11.7, 18.7, 111.1, 120.0, 122.1, 124.3, 127.6, 128.0, 129.5, 130.0, 

133.3, 133.7, 156.1, 157.6; IR (CHCI3) 2945,1463 cm-i; HRMS Calcd for C23H3oOSi: 

350.2066. Found: 350.2093. 
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5-Acetyl-2-i-butyl-3-methylbenzofuran (entry 14): NMR (CDCI3) 6 1.37 

(s, 9 H, CH3), 2.27 (s, 3 H, CH3), 2.59 (s, 3 H, CH3), 7.31 (d, J= 8.4 Hz, 1 H, aryl), 7.79 

(dd, J= 1.8, 8.4 Hz, 1 H, aryl), 7.99 (d, 7= 1.8 Hz, 1 H, aryl); 13c NMR (CDCI3) 6 8.9, 

26.7, 29.4, 34.4, 108.1, 110.2, 119.7, 124.2, 131.7, 131.8, 155.6, 161.5, 197.9; IR (neat) 

1688 (C=0) cm-1; HRMS Calcxi for CisHigQz: 230.1307. Found: 230.1302. 

5-Acetyl-3-methyl-2-(triisopropylsilyl)benzofuran (entry 15): ^H NMR 

(CDOs) 6 1.13 (d, J= 7.5 Hz, 18 H, CH3), 1.51 (septet, 7= 7.5 Hz, 3 H, CH), 2.37 (s, 3 

H, CH3), 2.67 (s, 3 H, CH3), 7.45 (d, J= 8.7 Hz, 1 H, aryl), 7.93 (dd, J= 1.8, 8.7 Hz, 1 

H, aryl), 8.17 (d, J =  1.8 Hz, 1H, aryl); I3c NMR (CDCI3) 6 9.3, 11.5, 18.5, 26.7, 110.8, 

120.5, 124.8,127.0, 130.2, 131.7, 157.5, 160.3, 197.7; IR (CHOs) 1675 (C=0) cm-i; 

HRMS Calcd for C2oH3oQ2Si: 330.2051. Found: 330.2012. 

3-r-Butyl-l,l-dimethyl-4-methylisochromene (entry 16): ̂ HNMR (CIKIls) 6 

I.27 (s, 9 H, CH3), 1.52 (s, 6 H, CH3), 2.12 (s, 3 H, CH3), 7.0 -7.3 (m, 4 H, aryl); 13c 

NMR(CDCl3)6 13.7, 26.1, 29.0, 36.3, 75.5, 104.0, 120.8, 121.5, 125.6, 127.0, 134.2, 

136.8, 155.7; IR (CHCI3) 2921,1621 cm-l; HRMS Calcd for C16H220:230.1671. Found: 

230.1674. 

l,l-Diniethyl-3,4-diphenylisochromene (entry 17): iH NMR (CDCI3) 6 1.79 

(s, 6 H, CH3), 6.88 (d, 7= 7.5 Hz, 1 H, aryl), 7.0-7.4 (m, 13 H, aryl); 13C NMR (€003) 6 

27.1, 77.6, 115.6, 122.1, 123.5, 126.8, 127.1, 127.4, 127.5, 127.7, 128.5, 128.7, 131.6, 

131.9, 135.9, 136.3, 137.0, 148.1; IR (CHa3) 2918,1616 cm-i; HRMS Calcd for 

C23H20O: 312.1514. Found: 312.1523. 

Ethyl l,l-dimethyl-3-phenylisochroniene-4-carboxylate (entry 18): iH 

NMR ( C D O s ) 5 0.89 (t, /= 7.2 Hz, 3 H, CH3), 1.74 (s, 6 H, CH3), 4.00 (q, J= 12 Hz, 2 

H, CH2), 7.1-7.6 (m, 8 H, aryl), 7,9 (dd, 7= 1.2, 7.5 Hz, 1 H, aryl); 13C NMR (CDQs) 6 

13.5, 27.0, 60.4, 79.5, 108.2, 122.2, 122.8, 127.1, 127.5, 127.7, 127.9, 128.4, 129.6, 
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134.9, 135.6, 157.4, 168.0; ER (CHCI3) 2928,1708 cm-i; HRMS Calcd for C20H20O5: 

308.1412. Found: 308.1419. 

l,l-I>imethyI-3-(l-hydroxy-l-metliylethyI)-4-phenyIisochromene (entry 

19): IH NMR (OXHs) 5 1.28 (s, 6 H, CH3). 1.70 (s, 6 H, CH3), 2.22 (s, 1 H, OH), 6.50 

(d, 7= 7.5 Hz, 1 H, aryl), 7.0-7.6 (m, 8 H, aryl); NMR (CDCI3) 6 26.9, 29.3, 72.9, 

112.3, 121.8, 123.6, 126.7, 127.1, 127.3, 128.5, 131.3, 132.4, 135.7, 136.9, 153.1; JR 

(CHCI3) 3500,2920 cm-l; HRMS Calcd for C20H22Q2: 294.1620. Found: 294.1625. 

3-/-ButyI-4-methylisocoumarin (entry 20): ^H NMR (OXls) 6 1.46 (s, 9 H, 

CH3), 2,34 (s, 3 H, CH3), 7.45 (dt, J= 0.6, 7.8 Hz, 1 H, aryl), 7.56 (d, 7= 8.1 Hz, 1 H, 

aryl), 7.73 (dt, 7= 1.2, 8.1 Hz, 1 H, aryl), 8.1 (dd, 7 = 0.9,7.8 Hz, 1 H, aryl); 13C NMR 

(0X13)5 12.9, 26.6, 37.1, 107.3, 120.1, 122.4, 127.0, 129.1, 134.3, 139.8, 159.2, 162.4; 

IR(CHCl3) 1720 (C=0)cm-i; HRMS Calcd for C14H16Q2; 216.1150. Found; 216.1150. 

4-Ethyl-3-(l-hydroxycyclohexyl)isocoumarin (entry 21): ^H NMR (CDQs) 6 

1.23 (t, 7= 7.2 Hz, 3 H, CH3), 1.60-2.16 (m, 10 H, CH2), 2.18 (s, 1 H, OH), 3.07 (q, 7= 

7.2, 2 H, CH2), 7.45 (t, 7= 7.2 Hz, 1 H, aryl), 7.62 (d, 7= 8.1 Hz, 1 H, aryl), 7.73 (t, 7= 

8.1 Hz, 1 H, aryl), 8.27 (d, 7= 8.1 Hz, 1 H, aryl); NMR (CDQs) 6 15.0, 18.4, 21.4, 

25.0, 36.0, 75.0, 115.0, 120.6, 123.0, 127.3, 129.4, 134.4, 138.7, 156.8, 162.1; ER 

(CHCI3) 1711 (C=0) cm-l; hrmS Calcd for C17H20O3: 272.1412. Found: 272.1405. 

3-(l-Hydroxy-l-methylethyl)-4-phenyIisocoumarin (entry 22): ^HNMR 

(CDOs) 5 1.47 (s, 6 H, CH3), 2,08 (s, 1 H, OH), 6.80 (d, 7= 8.1 Hz, 1 H, aryl), 7.2-7.6 

(m, 7 H, aryl), 8.31 (d, 7= 7.8 Hz, 1 H, aryl); NMR (CDCI3) 6 29.8, 73.3, 114.2, 

119.8, 125.3, 127.8, 128.2, 128.7, 129.3, 130.5, 134.2, 134.5, 139.5, 156.7, 161.5; IR 

(CHCI3) 1716 (C=0) cm-l; hrmS Calcd for C18H16O3: 280.1099. Found: 280.1097. 

4-Phenyl-3-(trimethylsilyl)isocoumarin (entry 23): ^H NMR (CDCI3) 6 0.01 

(s, 9 H, CH3), 6.94 (d, 7= 7.8 Hz, 1 H, aryl), 7.1-7.7 (m, 7 H, aryl), 8.34 (d, 7= 7.5 Hz, 1 
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H,aryl);i3CNMR(CDCl3)6-1.4, 121.1, 124.8, 128.4, 128.5 (2), 128.8, 129.1, 131.2, 

134.1, 134.4, 137.5, 160.6, 163.2; IR (CHCI3) 1719 (C=0) cm-l; HRMS Calcd for 

C18H18Q2: 294.1076. Found: 294.1079. 

4-(l-Cyclohexenyl)-3-(trimethylsiIyl)isocoumarin (entry 24): NMR 

(CDQs) 6 0.27 (s, 9  H, CH3), 1.6-2.4 (m, 8 H, CH2), 5.73 (s, 1 H, vinyl), 7.30 (d, J= 8.1 

Hz,  1  H,  a ry l ) ,  7 .43  ( t ,  J =1 .5  Hz,  1  H,  a ry l ) ,  7 .63  ( t ,  J= 7.5  Hz ,  1  H,  a ry l ) ,  8 .24  (d ,  J= 

8.1 Hz, 1 H, aryl); I3c NMR (CDCI3) 5 -0.7, 21.6, 22.5, 25.3, 30.4, 121.5, 124.1, 128.1, 

129.2, 130.6, 130.9, 131.9, 134.1, 136.7, 158.9, 163.3; IR (CHQs) 1713 (C=0) cm-i; 

HRMS Calcd for Ci8H2202Si: 298.1389. Found: 298.1387. 

4-Methyl-3-(triisopropylsilyI)isocoumarin (entry 25): ^H NMR (CDCI3) 6 

I.17 (d, J =  7.5 Hz, 18 H, CH3), 1.51 (septet, J =  7.5 Hz, 3 H, CH), 2.28 (s, 3 H, CH3), 

7.53 (m, 2 H, aryl), 7.76 (t, 7= 7.5 Hz, 1 H, aryl), 8.34 (d, 7= 7.5 Hz, 1 H, aryl); I3c 

NMR(CDa3)6 12.2, 14.3, 18.6, 121.3, 122.2, 122.7, 128.2, 129.1, 134.2, 137.3, 157.9, 

163.4; IR (CHCI3) 1721 (C=0) cm-l; hrmS for Ci9H28Q2Si: 316.1859. Found 316.1860. 

5-Acetyl-3-methylbenzofuran. 5-Acetyl-3-raethyl-2-(triisopropylsilyl)benzofuran 

(69.5 nig, 21 mmol), BCF* 2H2O (62 mg, 0.66 mmol), tetra-n-butylanunonium chloride (220 

mg, 0.79 mmol), and 1.5 ml CH3CN were heated at 60 for 6.5 h. The mixture was diluted 

with ether, washed with water, and dried over MgS04. The solvent was removed under 

reduced pressure and the residue was chromatographed using 4:1 hexane/EtOAc to yield 87% 

of the desired product: ^H NMR (CDCI3) 6 2.27 (s, 3 H, CH3), 2.67 (s, 3 H, CH3), 7.45 (m, 

2 H, aryl and vinyl), 7.90 (dd, J = 1.2, 8.7 Hz, 1 H, aryl), 8.16 (s, 1 H, aryl); NMR 

(CDa3)6 7.8, 26.7, 111.1, 116.3, 120.6, 124.8, 129.0, 132.0, 142.6, 157.7, 197.6; IR 

(CHas) 1675 (C=0) cm-l; hrmS Calcd for CnHioQz: 174.0680. Found: 174.0685. 
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CHAPTER 4: SYNTHESIS OF PHENANTHRENES VIA PALLADIUM-

CATALYZED ANNULATION OF INTERNAL ALKYNES 

A paper to be submitted to the Journal of Organic Chemistry 

R. C. Larock and M. J. Doty 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

A number of 9,10-disubstituted phenanthrenes have been prepared in good yields by 

treating 2-iodd)iphenyl with various internal alkynes in the presence of a palladium catalyst 

Synthetically, the methodology provides an especially efficient and conveniait route to 

hindered phenanthrenes containing aryl, silyl, estar, ketal, and hydroxyl groups. The 

mechanism of intramolecular ring closure could either involve electrophilic palladation onto an 

aromatic ring or oxidative insertion into an aryl C-H bond via a vinylpalladiirai intermediate. 

Introduction 

The transition-metal mediated annulation reactions of alkynes are of great current 

interest and have been proven usefiil for the synthesis of a variety of hetero- and carbocyclic 

ring systems.̂  A palladium-based methodology is especially convenirat, since the metal 

complexes are readily available, accomodate a number of different fiinctional groups, and are 
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not generally oxygen or moisture sensitive 2 Nevertheless, the development of such a 

methodology towards the synthesis of polycyclic aromatic hydrocarbons has only recently been 

demonstrated. 

Erker has shown that acenaphthylene derivatives can be synthesized from aUcenes and 

alkynes under palladium-catalysis from l,8-diiodonapthalene.3 An even more interesting 

reaction by the same group is the synthesis of 9,10-disubstituted phenanthrenes'̂  in fair to good 

yield from aryl iodides and diarylacetylenes via a palladium-catalyzed domino coupling 

process.̂  Although extremely efficient, a drawback to the latter reaction is the formation of 

phenanthrene r^oisomo's in substituted systems (eq. 1). 

OMe 

6 
II 

OMe 

MeO 

cat. 

Pd(0) 

OMe 380/0 

MeO 

OMe MeO 

MeO 

OMe 

OMe 

(1) 

OMe 

62 38 

Another efficient route to such systems was envisioned by Heck in 1989, when it was 

reported that 9,10-diphenylphenanthrene was formed as a 1:1 adduct from the palladium-

catalyzed coupling of 2-iodobiphenyl and diphenylacetylene.® Unfortunately, the yield of the 

reaction under their reported conditions was only 14%. Because of our own interest in similiar 

annulation processes,̂  we now wish to report substantially improved reaction conditions that 

effectively accomplish this transformation in good yield with a variety of internal alkynes. 
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Results and Discussion 

We have developed a simple procedure for the aimulation of internal alkynes by 

2-iod()biphenyl as shown below (eq. 2). Our results using this procedure for the synthesis of 

II 
5 % Pd(0Ac)2 
2 equiv NaOAc 

0.5 equiv LiCI 
DMF, 100 °C 

(2) 

9,10-disubstituted phenanthrenes are summarized in Table 1. 

As with our previous work, the annulation process works best for alkynes containing 

hindered alkyl, trialkylsilyl, or other similar groups (entries 3-6, Table 1). Notable exceptions 

to this goierality include annulation onto diaryl alkynes (entries 1 and 7, Table 1) and ethyl 

phenylpropiolate (entry 2, Table 1). Reacting diphenylacetylene with 2-iodobiphenyl under 

these conditions generated an 89 % yield of 9,10-diphenylphenanthraie, a 75 % improvement 

in yield over the previously rqxjrted procedure. 

Since dealylation of trimethylsilylalkynes to taminal acetylenes competed with the 

aimulation process, both the desired phenanthrene product and Sonogashira-type coupling 

products^ were produced in these reactions (entry 6, Table 1). Recent research  ̂and previous 

results^® with similar chemistry have shown that this problem can be somewhat remedied by 

increasing the size of the silyl group, where the best choice of the silyl group is determined by 

the type of R group on the opposite side of the triple bond. 

This reaction may proceed by eitha- of two possible paths involving (1) reduction of 

Pd(0Ac)2 to the actual catalyst Pd(0), (2) oxidative addition of the starting halide to Pd(0), 
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Table 1. Synthesis of Phenanthrenes from 2-lodobiphenyl and Internal Alkynes (eq. 2)^ 

2-iodobiphenyl 
entry (equiv) alkyne (equiv) time (h) product(s) yield (%)'' 

C(CH3)20H (1) 
•C(CH3)20 H 
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(1.1) Ph- (1) 

(1.1) -S-Et (1) 

(1) Ph-^-Si(CH3)3 (2) 
Si(CH3)3 
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^ See the text and experimental section for the detailed procedure. ^ Yields refer to isolated compounds purified by 

chromatography. ^(2-Phenylphenyl)phenylacety!ene was also isolated as a separate side product in 32 % yield. 
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(3) arylpalladium coordination of the aHqme and then insation of the alkyne to form a 

vinylpalladium intermediate, (4) either electropMlic palladation of the vinylpalladium onto the 

adjacent aromatic ring (pafli 1) or oxidative addition of the neighboring aiyl C-H bond to the 

vinylpalladium intermediate to form a palladium(IV) intomediate (path 2), (5) elimination of HI 

by base, and (6) regeneration of Pd(0) catalyst by reductive elimination to form the 

phenanthiene (Scheme 1). 

Scheme 1 

Pd(0) Pd(0Ac)2 
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Synthetic applications of this chemistry are cuirently under investigation with regard to 

functionalization of the silyl-substituted phenanthrenes, the synthesis of phenanthrenes 

substituted in the 1-8 positions, and the synthesis of mesonaphthodianthrone derivatives from 

the acid-catalyzed closure of 9,10-di(2-carbomethoxyphenyl)phenanthrene precursors (eq. 3). 

1.H-^ 

2. hv 
(3) 

Experimental Section 

General. All and NMR spectra were recorded at 300 and 75.5 MHz 

respectively. Thin-layer chromato^iaphy (TLC) was performed using commerically prepared 

60 mesh silica gel plates (Whatman K6F), and visualization was effected with short 

wavelength UV light (254 nm), or basic KMn04 solution [3 g KMn04 + 20 g K2CX)3 + 5 ml 

NaOH (5%) + 300 ml H2O]. All melting points are uncorrected. 

Reagents. All reagents were used directly as obtained commerically unless otherwise 

noted. Anhydrous forms of NaOAc and LiCl, as well as DMF, THF, ethylene glycol, 

diethylamine, and benzene, were purchased from Fisher Scientific. All palladium compounds 

were donated by Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., Ltd. l-Phenyl-2-

(trimethylsilyl)acetylene, 4-phenyl-3-butyn-2-one, pyridinium /^toluenesulfonate, and Cul 
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were obtained from Aldrich Chemical Co., Inc. Methyl 2-iodobenzoate, 4-phMiyl-2-methyl-3-

butyn-2-ol and l-(l-butynyl)cyclohexanol were purchased from Farchan Scientific Co. 

Diphenylacetylene and ethyl phaiylpropiolate were purchased from Eastman Kodak Co. The 

following starting materials were prepared. 

2-(2-Phenyl-l-etliynyl)-2-methyl-l,3-dioxoIane.4-Hienyl-3-butyn-2-one(l 

g, 6.9 mmol), ethylene glycol (2.15 g, 34.7 mmol), and pyridinium p-toluenesulfonate (0.35 

g, 1.38 mmol) were placed in 42 ml of baizene. Using a Dean-Stark apparatus, water was 

removed at reflux over a period of 24 L The flask was cooled, diluted with 50 ml of ether, and 

washed with 2 x 50 ml of water. The aqueous phase was extracted with anober 25 ml of ether, 

the etho^ fracticms woe combined and dried (Na2S04). Rmoval of the solvent and column 

chromatography (8:1 hexane/EtOAc) afforded 1.24 g (96%) of Ihe desired product: NMR 

(CDQa) 6 1.79 (s, 3 H, CH3), 4.01 (m, 2 H, CH2), 4.13 (m, 2 H, CH2), 7.29 (m, 3 H, 

aryl), 7.41 (m, 2 H, aryl); 13C NMR (CDCI3) 6 26.4, 64.6, 82.7, 87.2, 101.1, 121.9, 128.1, 

128.5,131.7; IR(CHCI3) 2229 (C=C) cm-i;HRMSm/z 188.0838(calcdforC12H12O2, 

188.0837). 

Di(2-carbomethoxyphenyl)acetyIene. Methyl 2-iodobenzoate (2.62 g, 10 

mmol), Cul (9.5 mg, 0.05 mmol), Pda2(Ph3P)2 (70.1 mg, 0.1 mmol), and Et2NH (60 ml) 

were placed in a 5(X) ml flask purged with N2 for 5 min (important!). An acetylene balloon was 

placed over the flask for 24 h. After completicm, the solvent was removed under reduced 

pressure. Ether was added to the flask and the organic layer was separated, washed with water, 

and dried (MgS04). Removal of the solvent and column chromatography (8:1 hexane/EtOAc) 

afforded a 54% yield of the desired alkyne: NMR (CDCI3) 6 3.96 (s, 6 H, CH3), 7.39 (dt, 

J= 1.5,7.5 Hz, 2H, aryl), 7.51 (dt,7= 1.5,7.5Hz, 2H, aryl), 7.71 (dd, J= 1.5,7.5 Hz, 2 

H, aryl), 7.97 (dd, J= 1.5,7.5 Hz, 2 H, aryl); I3c NMR (0X33) 5 52.1, 93.0, 123.8, 

128.0, 130.4,131.7 (2), 134.3, 166.5; IR (CHa3) 1716 (OO) cm-l; HRMS m/z 294.0895 

(calcd for C18H14O4, 294.0892). 
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General Procedure for the Palladium-Catalyzed Formation of 9,10-

Disubstituted Phenanthrenes. Pd(OAc)2 (6 mg, 0,027 mmol), NaOAc (164 mg, 2.0 

mmol), LiCl (10.6 mg, 0.25 mmol), 2-iodobiphenyl (03-0.6 mmol), and the alkyne (0,5-0.55 

mmol) were placed in a 4 dram vial which was heated in an oil bath at 100 oC for the necessary 

period of time. The reaction was monitored by TLC to establish completion. The reaction 

mixture was cooled, diluted with either ether, THF, or methylene chloride, washed with 

saturated NH4CI, dried over anhydrous MgS04, and filtered. The solvent was evaporated 

under reduced pressure and the product was isolated by chromatography on a silica gel column 

The following compounds were prepared by the above procedure. 

9,10-Diphenylphenanthrene. The reaction mixture was chromatographed using 

4:1 hexane/EtOAc (tiie product was placed on the column with CH2Q2) to afford the desired 

compound with spectral properties identical to those previously reported.  ̂

Ethyl lO-phenylphenanthrene-9-carboxyiate. The reaction mixture was 

chromatogr^hed using 15:1 hexane/EtOAc to yield a white solid (mp 128-130 ̂ C, from 5:1 

ethanol/H20): NMR (ClXns) 6 0.94 (t, J= 7,5 Hz, 3 H, CH3), 4,10 (q, 7= 6.9 Hz, 2 H, 

CH2), 7.43 (m, 6 H, aryl), 7.63 (m, 4 H, aryl), 7.9 (m, 1 H, aryl), 8,71 (m, 2 H, aryl); 

NMR(CDa3)6 13.7, 61.0, 122.5, 122.6, 122.7, 122.8, 125.8, 126.7, 126.9, 127,3, 

127,7, 127.8, 128.0, 129.8, 130.2, 130,5, 130,6, 130,7, 136,3, 138,0, 169.1; IR (CHQa) 

1717 (C=0) cm-i; HRMS m/z 326.1311 (calcd for C23H18Q2, 326.1307). 

9-(l-Hydroxy-l-methylethyl)-10-phenylphenanthrene. The reaction mixture 

was chromatographed iising 4:1 hexane/EtOAc to yield a solid (mp 152-153 oC, from n-

hexane): iH NMR (De-acetone) 6 1.53 (s, 6 H, CH3), 3.98 (s, 1 H, OH), 7.15 (dd, 7= 0.9, 

7.5 Hz, 1 H, aryl), 7.25-7.7 (m, 9 H, aryl), 8.77 (d, 7= 8.1 Hz, 1 H, aryl), 8.83 (dd, 7= 

1,5, 8,1 Hz, 1 H, aryl), 9,3 (dd, 7= 1,5, 8,4 Hz, 1 H, aryl); I3c NMR (De-acetone) 6 34.4, 

75.7, 122.7, 123.3, 123.4, 125.6, 126.4, 126.8, 127.0, 127.8, 128.5, 130.6, 131.6, 131.8, 
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131.9, 132.1, 133.6, 135.8, 141.0, 143.1;IR (0103)3371 (OH) cm-l;HRMSin/z 

312.1508 (calcd for C23H20O, 312.1514). 

9-Ethyl-10-(l-hydroxycyclohexyl)phenanthrene. The reaction mixture was 

chromatogr^hed using 4:1 hexan^tOAc to yield a solid (mp 146-148 oC, from /i-hexane): 

IH NMR (CDQs) 6 1.36 (t, J= 7.5 Hz, 3 H, CH3), 1.43 (s, 1 H, OH), 1.47-2.1 (m, 8 H, 

CH2), 2.7 (dt, 7= 4.8, 14.4 Hz, 2 H, CH2), 3.58 (br s, 2 H, CH2), 7.4-7.7 (m, 4 H, aryl), 

8.13 (m, 1 H, aiyl), 8.5-8.7 (m, 3 H, aryl); I3c NMR (CDOs) 6 16.7, 22.2, 24.5, 25.1, 

37.8, 77.1, 122.5, 122.9, 124.1, 124.6, 124.8, 125.7, 126.4, 127.4, 130.2, 130.3, 130.6, 

132.2, 137.1, 140.0; IR (GHQs) 3354 (OH) cm-l; HRMS m/z 304.1827 (calcd for C22H24O, 

304.1828). 

9-(2-Methyl-2-(l,3-dioxoianyl))-10-phenylphenaiithrene. The reaction 

mixture was chromatographed using CH2CI2, followed by 15:1 hexane/EtOAc, to yield a white 

soUd (mp 128-130 oQ: iH NMR (CDCI3) 6 2.02 (s, 3 H, CH3), 3.52 (m, 2 H, CH2), 3.71 

(m, 2 H, CH2), 7.2-7.7 (m, 10 H, aryl), 8.6-8.8 (m, 2 H, aryl), 8.9 (m, 1 H, aryl); NMR 

(CDa3)6 29.4, 63.4, 110.4, 122.0, 122.5, 126.0, 126.32, 126.35, 127.5, 128.2, 128.3 

(2), 128.7, 129.8,130.2, 131.0, 132.5, 134.4, 136.3, 142.5; IR (Nujol) 1189 (C-0) cm-i; 

HRMS m/z 340.1463 (calcd for C24H20Q2, 340.1469). 

9-Phenyl-lO-trimethylsilylphenaiithrene. The reaction mixture was 

chromatographed using hexane: ^H NMR (ODCb) 6 0.12 (s, 9 H, CH3), 7.2-7.8 (m, 10 H, 

aryl), 8.35 (d, J= 1.8 Hz, 1 H, aryl), 8.73 (d, 7= 8.4 Hz, 1 H, aryl), 8.79 (d, 7= 1.8 Hz, 1 

H,aryl); I3c NMR (ax:i3) 6 2.8, 122.1, 123.0, 125.6, 125.7, 126.2, 126.8, 127.4, 127.7, 

127.8, 129.5, 128.8, 130.7, 131.4, 131.7, 134.5, 134.7, 142.3, 146.8; IR (CHCI3) 2896, 

1485 cm-l; HRMS m/z 327.1566 (calcd for C23H23Si, 327.1569). 

9,10<Di(2-carbomethoxyphenyl)phenanthrene. The reaction mixture was 

chromatographed using methylene chloride and the product was rinsed with cold methanol to 

yield a white solid in 62 % yield. Due to the insolubility of the product, it was identified with a 
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melting point (263-264 °C) and mass spectrum (m/z 446.1513, calcd for C30H22O4, 

446.1518). Reactions with substituted biaiyls that give similar soluble phenanthrenes have 

yielded appropriate spectral data.  ̂
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CHAPTER 5: SYNTHESIS OF VINYLIC HETERO- AND CARBOCYCLES 

VIA PALLADIUM-CATALYZED ANNULATION OF INTERNAL ALKYNES 
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R. C. Larock and M. J. Doty 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 

Abstract 

A number of vinylic hetero- and caibocycles have been ̂ thesized in good yield by 

treating appropriate functionally-substituted vinylic balides with internal aUgmes in the presence 

of a palladium catalyst Synthetically, the methodology provides a convenient, r^oselective 

route to a variety of vinylic hetero- and carbocyclic ring systems containing aryl, silyl, ester, 

acetal, and tert-dSsyl groups. 

Introduction 

The transition-metal mediated annulation reactions of alkynes are of great current 

interest 1 Palladium-based methodology is especially convenient since the metal complexes 

are readily available, accommodate a wide range of fimctionality, and are not generally oxygen 

or moisture sensitive. Consequently, a considerable number of aromatic heterocyclic ring 
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systems have been synthesized from aromatic halides or triflates using palladium chemistry.2.3 

However, rdatively little is known about the annulation reactions of allies with 

analogous vinylic substrates. A few recent examples have demonstrated that intramolecular 

cascade reactions can be used to annulate vinylic halides onto internal alkynes. These 

processes are usefiil for the synthesis of polycyclic ring systems and involve internal 

propagation of a vinylpalladium intermediate along an alkene and/or alkyne chain, and 

eventually trapping of the intermediate with either carbon monoxide, terminal alkies, 

organometallic reagents, or intsnal alfcenes (eq. 1).'* 

Me02C^ 

MeOaC ^ — Me02C 
C 02Me 

Me02C 
C OaMe 

(1) 

Another reported annulation process is the palladium-catalyzed hydrovinylation of 

internal alkynes to form l,3-dienes.5 In this case, the vinylpalladium intermediate formed by 

mono-insertion of the alkyne is reduced by triethylammonium formate (eq. 2). 

°atPd(0Ac).(PPh3)._ (2) 

H H EtaN , HCO2H \ " 

64 0/0 

In conjunction with our studies directed towards the synthesis of aromatic heterocycles 

via the palladium-catalyzed annulation of internal alkynes,we were interested in extending 
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this chemistry to vinylic halides, since no examples of this type of chemistry are currently 

known (eq. 3) J We now wish to report that under suitable reaction conditions, a number of 

XH = OH, NHTs, CH(C02Me)2, C{CH3)20H 
Y=l. Br 

interesting vinylic hetero- and carbocycles can be easily prepared in good yield using this 

metho<tology. 

In genatal, we have employed two sets of reaction conditions very similar to those 

reported by us for the annulation of alkynes vinylic cyclopropanes and cyclobutanes,̂  

allenes,^ and 1,3-dienesiO; procedure A - 5 mol % Pd(OAc)2,2-4 equiv of NaOAc, 1 equiv of 

LiCl, in DMF at 100 ̂ C; procedure B - 5 mol % Pd(0Ac)2,1-2 equiv of Na2C03,1 equiv of 

LiCl, in DMF at 100 ^C. Our preliminary results using these procedures are shown in Table 1. 

Furans. In order to probe the feasibility of the annulation process, we initiated our 

study using 2-iodo-2-cyclohexen-l-ol as the starting halide. We felt that this compound was 

an ideal candidate for the annulation process since similar carboxylic acid-containing, cyclic 

vinylic halides had previoudy worked well in our a-pyrone chemistry J This substrate was 

also easily prepared by alpha ioduiation^i and subsequent l,2-reductioni2 of the corresponding 

enone (eq. 4). 

Procedure 

AorB 
(3) 

Results 
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Table 1. Synthesis of Vinylic Heterocycles Via Annuiation of Internal Alkynes (eq 3)^ 

bass tsmp (t)i 
entry starting halide alkyns (equiv) time (h) product(s) yield (%)° 

CH3-=-C(CH3)3 NaOAc(2) 100,24 C(CH3)3 09 

PIi^=-C(CH3)20H NaOAc(4) 100,52 C(CH3)^^ 

Ph 

NaOAc(4) 100,24 5^ 

Et 
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-A 

NHTs 

Ph-s-Ph 

Ph-s-C OgEt 

COaMe 

CH3^-C(CH3)3 

7 
CH3-s-Si(/-Pr)3 

Ts 
'N 

-7 I 1 '> 
Na2C03(2) 100.7 

' Ph 

1̂ 1 
Na2C03(2) 100,5 ' , " " 

"bOaEt 
-P<. 

Na2C03(2) 100.23 

M eOaC XOaMe 
-C(CH3)3 

CHs 

Na2C03(2) 100.67 

^ CH3 
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Ph- Na2C03(2) 100,24 

M eOgC C OgM G 

53 

HgC^CHg 

L JL Ph-^COaEt NaaCOaO) 100,84 t 61 

10 Ph-^C(CH3)20H NaaCOaO) 100,168 

HaC^ vCHa 

C(CH3 20H 
48 

° See the text and Experimental Section for the detailed procedures. Yields refer to isolated compounds purified by 

chromatography. 
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CCIVpyridine 
35% 

NaBH4 

CeCIa 
97% 

CT 

OH 

(4) 

From our experiments, we discovered that the products formed from the reaction of 

2-iodo-2-cyclohexen-l-ol with internal alkynes dqpended on the starting vinylic halide, the 

reaction conditions, and the internal allgme undergoing annulation. For example, the reaction 

of 2-iodo-2-cyclohexen-l-ol with 4,4-dimethyl-2-pentyne using procedure A unexpectedly 

gave a 62 % overall yield of the two isomerized products shown in equation 5. The initially 

formed heterocyclic intermediate presumably isomerizes to the fliran by either base-catalyzed 

rearrangement by NaOAc^  ̂or an addition-elimination sequence involving acetic acid or a 

palladium hydride. The otha- product is presumably formed by a thermally allowed 1,5-

hydrogen shift. The product from the reaction of 4,4-dimethyl-2-butyne and 4,4-dimetiiyl-2-

iodo-2-cyclohexen-l-ol was cleanly the furan which could be isolated in 69 % yield (entry 1, 

NaOAc or 
HOAc or 
HPdl / 

C(CH3)3 

CH3-=-C(CH3)3 
C{CH3)3 

Procedure A 

C(CH3)3 

CHa 

31 % 

31 % 

(5) 
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Table 1). The presence of the two methyl groups now prevents the 1^-hydrogen shift from 

occurring. 

On the oflier hand, the reaction of 4-phenyl-2-methyl-3-butyn-2-ol and 2-iodo-2-

cyclohexen-l-ol under the same reaction conditions resulted in only a 42 % yidd of an 

inseparable 3:1 mixture of the corresponding fiuan and the unisomeiized product (eq. 6). It is 

OC" TwtoA?""- " Q[^C(CH3)20H ,6, 

42% P" 
3 1 

unclear why no product resulting from a 1,5-hydrogen shift was observed. Using 4,4-

dimethyl-2-iodo-2-cyclohexen-l-ol as the starting vinylic halide and chosing the proper base 

and reaction time, the insq)arable mixture of ftiran and unisomerized product can be avoided 

and completely converted to the fiiran (eq. 7; entry 2, Table 1 and entry 4, Table 2). Procedure 

5%Pd(OAc)2 n OH OH 
lequivUCI , _QVc(CH3)2 : _Q^6(CH3)2 (7) 

B using Na2C03 was intriguing, as it actually inhibited the isomerization process and reversed 

the product ratio (entry 5, Table 2). The reaction of this same alcohol with 1-(1-

butynyl)cyclohexanol also gave the furan, but only in a 51 % yield (aitry 3, Table 1). 

Nitrogen Heterocycles. The synthesis of nitrogen heterocycles was next 

examined. First, l-iodo-3,3-dimethyl-6-(tosylamino)cyclohexaie was prepared in two steps 
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Table 2. Reaction of 4,4-Dimethyl-2-iodocyclohexeii-ol with 4-Phenyl-2-

methyl-3-butyn-2-ol (eq 7). 

entry base (equiv) time (h) 1:2 ratio % isolated yield 

1 NaOAc(2) 10 45 : 55 64 

2 NaOAc(2) 24 17:83 72 

3 NaOAc(4) 24 15 : 85 71 

4 NaOAc(4) 52 0:100 73 

5 Na2CX)3(2) 24 87:13 73 

from the corresponding alcohol via the Mitsunobu reaction (eq. 8).14 we had envisioned that 

O H  .  ^  r . - . ^  . N H T s  
1. TsNBoc, DEAD / PPhs  ̂ J J (8) 

-/xA, 2. TFA, CH2CI2 

51 % 

this substrate would react with ratamal alkynes using procedure A to form pyrroles, in analogy 

with the fiiran chemistry. However, reacting the starting sulfonamide with diphenylacetylene 

under Uiese conditions gave a 55 % yield of a complex mixture, consisting mainly of 

unisomerized product and no pyrrole. Fortunately, since the nitrogen heterocycle was more 

difficult to isomerize and procedure B appeared to inhibit isomoization (entry 5, Table 2), we 
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were able to cleanly obtain a 78 % yield of the unisomerized product using that procedure 

(entry 4, Table 1). The regioselective reaction of this same sulfonamide with ethyl 

phaiylpropiolate gave similar results (entry 5, Table 1). 

Carbocycles. We were also able to successfully synthesize carbocycles using 

this methodology. The starting material, dimethyl (2-iodo-4,4-dimethyl-2-

cyclohexenyl)malonate, was syntheazed in 71 % yield from the alcohol by malonate 

di^lacement of the corresponding iodide (eq. 9), Treatment of this substrate with 4,4-

dimethyl-2-pentyne, l-(triisopropylsilyl)propyne, and2-(phenylethynyl)-2-methyl-l,3-

1.TMSCI, Nal ^v^CH(C02Me)2 ^ 

2. NaCH(C02Me)2 

71 % 

dioxolane using procedure B gave good to excellent yields of the pure, luiisomaized 

carbocycles (entries 6-8, Table 1). It is interesting to note that using the sterically-hindered 

ketal reverses the r^ochemistry normally seoi with similar unprotected ketone-containing 

alkynes.2»3a 

Pyrans. Pyians were also accessible io fair to good yields from the reaction of 

internal alkynes with 2-(2-bromo-l-cyclohexenyl)-2-propanol (entries 9 and 10, Table 1). 

Having the bromide as a leaving group significantly decreased the reaction rate and also gave 

slightly lower yields. The starting bromo carbinol was prepared by Grignard addition to 

methyl 2-bromocyclohex-l-ene-l-caiboxylate (eq. 10). 

As with our previous chemistry, the annulation process is highly r^oselective for 

alkynes containing hindered allq^l, triallqrlsilyl, or other similar groups with a tertiary caiter 
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II HsC CHs 

0^°"^ . [^OH 

9 0 %  

(entries 1-3,6-8, and 10, Table 1); however, high-yielding, clean reactions are again genaally 

limited to these types of alkynes. An exception to this generality is the r^oselective 

annulation of various substrates onto ethyl phoiylpropiolate (entries 5 and 9, Table 1). The 

r^ochemistry for the products is assumed to have the more sterically-demanding group in the 

2-position of these ring systems in accordance with the pattern established in our previous 

alkyne addition reactions. 

The foregoing studies demonstrate that a useful synthesis of vinylic hetero- and 

carbocycles has been developed using the palladium-catalyzed annulation of sterically-hindered 

internal alkynes. The procedure utilizes easily synthesized starting materials. The reaction 

proceeds under relativdy mild conditions and gives good yields. Unfortunately, a number of 

these reactions have also been run with comparable acyclic vinylic halides and have produced 

either complex mixtures or no idaitifiable products at alL Thus, we are currently trying to 

overcome this limitation and continue to expand the scope of this process. 

Experimental Section 

General. All and NMR spectra were recorded at 3(X) and 155 MHz 

respectively. Thin-layer chromatography (TLQ was preformed using commercially prq)ared 

60 mesh silica gel plates (Whatman K6F), and visualization was effected with short 
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wavelength UV light (254 nm), or basic KMn04 solution [3 g KMn04 + 20 g K2CO3 + 5 ml 

NaOH (5%) + 300 ml H2O]. All melting points are uncorrected 

Reagents. All reagents were used directly as obtained commercially unless otherwise 

noted. Anhydrous forms of NaOAc, Na2CC)3, LiCl, and sodium borohydride were purchased 

from Fisher Scientific. DMF, TUF, pyridine, trifluoroacetic acid, methylene chloride, 

methanol, acetonitrile, and CCI4 were purchased from Fisher Scientific. All palladium 

compounds were donated by Johnson Matthey, Inc. and Kawaken Fine Chemicals Co., Ltd. 

2-Cyclohexai-l-one, 4,4-dimethyl-2-cyclohexen-l-one, cerium(III) chloride hq)tahydrate, 

diethyl azodicarboxylate, l-(triisopn)pylsilyl)piopyne, triphenylphosphine, trimethylsilyl 

chloride, dimdhyl malonate, methyl iodide, magnesium, and I2 were obtained finm Aldrich 

Chemical Co., Inc. 4,4-Dimethyl-2-butyne, 4-phenyl-2-methyl-3-butyn-2-ol and 1-(1-

butynyl)cyclohexanol were purchased from Farchan Sciaitific Co. Diphaiylacetylaie and 

ethyl phenylpropiolate were purchased from Eastman Kodak Co. The following starting 

materials were prepared according to literature procedures: 2-(2-phenyl-l-ethynyl)-2-methyl-

l,3-dioxolane,i5 methyl-2-bromocyclohex-l-ene-l-carboxylate,i® andiV-Boc p-

toluenesulfonamide.i'̂  The following starting matarials were prepared as indicated, 

2-Iodo-2-cyclohexen-l-ol. I2 (13.16 g, 104 mmol) dissolved in 130 ml of 1:1 

CCVpyridine was added under N2 to a solution of 2-cyclohexai-l-one dissolved in 100 ml of 

1:1 CCLj/pyridine at 0-5 oC. The mixture was stirred for 1 h as the temperature was raised 

from 0 OC to rL The mixture was diluted with 500 ml of ether, washed with water (2 x 125 

ml), 1 N HQ (2 X 200 ml), water (100 ml), 20 % Na2S2Q3 (2 x 100 ml), and dried (MgS04). 

After filtration and concentration, the solid was chromatographed using 2:1 hexane/EtOAc and 

recrystallized from hexane/ether to yield 4.0 g of 2-iodo-2-cyclohexen-l-one (35 %). This 

compound (1.09 g, 4.9 nmiol) and ceriumCni) chloride hqptahydrate (1.86 g, 5.0 mmol) were 

dissolved in 13 ml of MeOH. Sodium borohydride (193 mg, 5.07 mmol) was added in one 



www.manaraa.com

87 

portion (careful!) with stirring under N2. After 10 min, the gas evolution ceased and the 

reaction was quenched with saturated NH4a, followed by 5 % HCl. The product was 

extracted wifli ether, dried over Na2S04, and chromatographed using 4:1 hexane/EtOAc to 

yield 1.06 g (97%) of the product as a clear oil with spectral properties identical to those 

previously reported. 

2-Iodo-4,4-dimethyl-2-cyclohexen-l-ol. 4,4-Dimethyl-2-cycloh©cen-l-one 

(3.24 g) was placed in 100 ml of 1:1 CCLi/pyridine and I2 (13.16 g, 104.2 mmol) in 130 ml of 

1:1 CCLj/pyridine was added over 10 min at rt. The mixture was stirred in the dark for 72 h. 

The mixture was diluted with 300 ml of ether, washed with 20 % Na2S203 (2 x 1(X) ml), water 

(ICX) ml), 1N HQ (4 x 1(X) ml), and dried (MgS04). The solvent was removed to yield 86 % 

of the desired iodoenone: iH NMR (CDaa) 6 1.20 (s, 6 H, CH3), 1.93 (t, J= 6.3 Hz, 2 H, 

CH2), 2.68 (t, 7= 6.3 Hz, 2 H, CH2), 7.46 (s, 1 H, vinyl). This compound (2.50 g, 10 

mmol) and cerium(III) chloride hq)tahydrate (3.72 g, 10 mmol) were dissolved in 25 ml of 

MeOH. Sodium borohydride (380 mg, 10 mmol) was added in one portion (careful!) with 

stirring under N2. After 10 min, the gas evolution ceased and the reaction was quenched with 

saturated NH4CI, followed by 5 % HCl. The product was extracted with ether, dried ova* 

MgS04, and chromatographed using 4:1 hexane/EtOAc to yield 2.34 g (97 %) of the product 

as a clear oil: ^H NMR (CDOs) 6 0.99 (s, 3 H, CH3), 1.03 (s, 3 H, CH3), 1.52 (m, 1 H, 

CH), 1.63 (m, 1 H, CH), 1.89 (m, 1 H, CH), 2.04 (m, 1 H, CH), 2.12 (br s, 1 H, OH), 

4.12 (q, 7= 5.1 Hz, 1 H, CH), 6.23 (s, 1 H, vinyl); 13C NMR (CDQs) 5 27.9, 28.8, 28.9, 

32.3, 37.3, 71.4, 102.5, 150.0; IR(CHa3) 3421 (OH), 1618 (C=C) cm-i; HRMS m/z 

252.0013 (calcdforCgHisIO, 252.0011). 

l-lodo-3,3-dimethyI-6-(tosylamino)cyclohexeiie. Triphenylphosphine (4.67 

g, 17.9 mmol) and iV-Boc /7-toluenesulfonamide (2.43 g, 8.91 mmol) were dissolved in 80 ml 

of dry THF. 2-Iodo-4,4-dimethyl-2-cyclohexen-l-ol (1.65 g, 6.5 mmol) was added, 

followed by diethyl azodicarboxylate (2.29 ml, 14.6 mmol). The mixture was stirred for 4 h. 
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concentrated, and the product was purified by chromatography using 8:1 hexanes/EtOAc to 

yield the crude 6-(A^-Boc-A^-tosylamino)-l-iodo-3,3-dimethylcyclohexene: NMR (CDQa) 

6 1.03 (s, 3 H, CHs), 1.08 (s, 3 H, CH3), 1.42 (s, 9 H, CH3), 1.67 (m, 2 H, CH2), 2.09 

(m, 2 H, CH2), 2.43 (s, 3 H, CH3), 2.51 (m, 1 H, CH), 4.97 (br s, 1 H, NH), 6.22 (d, 7= 

0.9 Hz, 1 H, vinyl), 7.29 (d, J= 8.1 Hz, 2 H, aryl), 7.91 (d, /= 8.1 Hz, 2 H, aryl). AU of 

this compound was placed in 70 ml of CH2CI2 containing 2.18 ml of trifluoroacetic add and 

stirred for 30 h at rt After completion, the solvent was removed and the product was ptirified 

by chromatography using 8:1 hexanes/EtOAc to afford the desired tosylamide in 51 % overall 

yield; ^H NMR (CDOs) 5 0.95 (s, 3 H, CH3), 0.99 (s, 3 H, CH3), 1.52 (m, 2 H, CH2), 

1.95 (m, 2 H, CH2), 2.42 (s, 3 H, CH3), 3.75 (m, 1H, CH), 4.58 (br s, 1 H, NH), 6.24 (s, 

1 H, vinyl), 7.32 (d, J= 8.1 Hz, 2 H, aryl), 7.81 (d, /= 8.1 Hz, 2 H, aryl); NMR 

(CDa3)6 21.4, 27.2, 28.5, 29.4, 31.1, 37.2, 57.6, 94.7, 127.6, 129.4, 137.5, 143.3, 

153.1; m (CJIOs) 3247 (NH) cm'i; HRMS m/z (M+ -1) 278.1213 (calcd for C15H20NO2S, 

278.1215). 

Dimethyl (2-iodo-4,4-dimethyI-2-cyclohexenyl)malonate. One g (3.96 

nraiol) of 2-iodo-4,4-dimethyl-2-cyclohexen-l-ol and 0.88 g (5.94 mmol) of Nal were placed 

in 10 ml of CH3CN imder N2. Trimethylsilyl chloride (0.75 ml, 5.94 mmol) was added at rt 

all at once and the reaction was stirred for 24 h in die dark. The reaction was quenched with 

water. Ether was added. The organic layer was separated and washed with 10 ml of 10 % 

Na2S2Q3,20 ml of water, and 20 ml of brine, and then dried (MgS04). The product was 

purified by chromatography using hexane to yield 1.08 g (76 %) of l,6-diiodo-3,3-

dimethylcyclohexene: iH NMR (0X13) 5 0.98 (s, 3 H, CH3), 1.05 (s, 3 H, CH3), 1.22 (d, / 

= 0.9 Hz, 1 H, CH), 1.80 (m, 1 H, CH), 2.02 (m, 2 H, CH2), 5.00 (d, J = 2.1 Hz, 1 H, 

CH), 6.08 (s, 1H, vinyl). Dimethyl malonate (0.83 g, 6.26 mmol) in 1 ml of 2:1 DMF/THF 

was added to NaH (150 mg, 6.26 mmol) in 8 ml of 1:1 DMF/THF and stirred for 15 min. 

l,6-Diiodo-3,3-dimethylcyclohexene (1.14 g, 3.13 mmol) in 4 ml of 1:1 DMF/THF was added 
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all at once and stirred for 13 h. The reaction was quenched with saturated NKL^a and extracted 

with ether. The ether layer was separated and dried (MgS04). The product was isolated by 

chromatography using 8:1 hexane/EtOAc to yield 1.06 g (93 %) of Methyl (2-iodo-4,4-

dimethyl-2-cyclohexaiyl)malonate: NMR (CDQa) 6 1.00 (s, 3 H, CH3), 1.02 (s, 3 H, 

CH3), 1.48 (m, 2 H, CH2), 1.89 (m, 1 H, CH), 2.16 (m, 1 H, CH), 2.97 (m, 1 H, CH), 

3.74 (s, 3 H, CH3), 3.76 (s, 3 H, CH3), 4.07 (d, J = 4.8 Hz, 1H, CH), 6.31 (br s, 1 H, 

vinyl); NMR (0X33) 6 22.4, 27.4, 28.2, 34.2, 36.7, 43.4, 51.6, 52.1, 55.4, 99.0, 

150.7,167.5,168.3; IR (neat) 1755 (C=0), 1732 (C=0), 1618 (C=C) cm-l; HRMS m/z (M+ 

-1) 239.1290 (calcd for C12H19O4, 239.1283). 

2-(2-Bromo-l-cyclohexenyI)-2-propanol. Magnesium (0.27 g, 11.29 mmol) 

was placed in 5 ml of dry ether. Methyl iodide (0.66 ml, 10.52 mmol) was added slowly to 

the flask to form the Grignard reagmt The flask was heated an additional 15 minutes and 

methyl (Z)-2-bn)mocyclohex-l-ene-l-caiboxylate (1.00 g, 4.56 mmol) in 3 ml of dry ether 

was added. The mixture was heated at reflux for 1 h and the mixture was quenched with 

saturated NH4a. The product was extracted with ether, washed with water and brine, and 

dried over MgS04. The crude product was chromatographed using 8:1 hexane/EtOAc to yield 

0.9 g (90 %) of thecarbinol: ^H NMR (CDCI3) 6 1.43 (s, 6 H, CH3), 1.63 (m, 4 H, CH2), 

2.22 (m, 2 H, CH2), 2.56 (m, 2 H, CH2), 3.34 (s, 1 H, OH); 13C NMR (0003) 6 22.4, 

24.3, 27.8,28.3, 38.9, 73.8,117.3,140.5; IR (neat) 3453 (OH), 1630 (C=C) cm-i; HRMS 

m/z 218.0306 (calcd for CpHisBrO, 218.0304). 

General Procedure for the Palladium-Catalyzed Formation of Vinylic 

Heterocycles. Pd(0Ac)2 (3 mg, 0.0135 mmol), the base (2.0 mmol), LiQ (10.6 mg, 0.25 

mmol), the starting vinylic hali^ (0.25 mmol), and the alkyne (0.50 mmol) were placed in a 2 

dram vial which was heated in an oil bath at 100 oC under N2 for the necessary poiod of time. 

The reaction was monitored by TLC to establish completion. The reaction mixture was cooled, 

diluted with etha:, washed with saturated NH4a, dried over anhydrous MgS04, and filtered. 
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The solvent was evaporated under reduced pressure and the product was isolated by flash 

column chromatography on a silica gel column. The following compounds were prepared by 

the above procedure. 

2-f-ButyI-4,5,6,7-tetrahydro-3,5,5-trimethyIbenzofuran (entry 1, Table 

1). The reaction mixture was chromatographed using hexane to yield a clear oil: NMR 

(CDQa) 5 0.97 (s, 6 H, CH3), 1.30 (s, 9 H, CH3), 1.52 (t, /= 6.3 Hz, 2 H, CH2), 1.93 (s, 

3 H, CH3), 2.05 (s, 2 H, CH2), 2.48 (t, /= 6.3 Hz, 2 H, CH2); NMR (CDQs) 6 9.3, 

20.5, 28.2, 28.7, 30.2, 33.7, 34.6, 36.2, 111.4, 118.0, 145.1, 154.8; IR (CHQb) 1646 

(C=C), 1456 (C=C) cm-l; HRMS m/z 220.1832 (calcd for C15H24O, 220.1827). 

4,5,6,7-Tetrahydro-2-(l-hydroxy-l-methyIethyI)-5,5-dimethyl-3-

phenylbenzofuran (entry 2, Table 1). The reaction mixture was chromatographed using 

8:1 hexaneffitOAc: iR NMR (CDQa) 6 0.95 (s, 6 H, CH3), 1.45 (s, 6 H, CH3), 1.58 (t, /= 

6.6 Hz, 2 H, CH2), 1.98 (s, 2 H, CH2), 2.08 (s, 1 H, OH), 2.58 (t, 7= 6.6 Hz, 2 H, CH2), 

7.2-7.4 (m, 5 H, aryl); 13C NMR (CDCb) 6 20.6, 27.9, 29.9, 30.2, 34.8, 36.0, 70.5, 118.1, 

120.9, 126.8, 127.9, 129.9, 134.3, 146.6, 152.3; IR (CHCI3) 3460 (OH), 1683 (C=C), 

1605 (C=C), 1494 (C=C) cm-l; HRMS m/z 284.1773 (calcd for C19H24O2, 284.1776). 

3-Ethyl-4,5,6,7-tetrahydro-2-(l-hydroxycyclohexyl)-5,5-

dimethylbenzofuran (entry 3, Table 1). The reaction mixture was chiomatogr^hed 

using 8:1 hexane/EtOAc: ^H NMR (C3XI3) 6 0.98 (s, 6 H, CH3), 1.07 (t, J= 7.5 Hz, 3 H, 

CH3), 1.30-2.05 (m, 13 H, CH2), 2.11 (t, 7= 1.5 Hz, 2 H, CH2), 2.40-2.60 (m, 4 H, CH2); 

l3CNMR(CDa3)6 15.6, 17.2, 20.6, 22.0, 25.5, 28.0, 30.2, 34.7, 35.9, 37.2, 72.0, 

117.8, 120.9, 146.5, 151.8; IR (CHQs) 3457 (OH), 1647 (C=C), 1575 (C=C), 1453 (C=C) 

cm-1; HRMS m/z 276.2086 (calcd for Ci8H280!2, 276.2089). 

iV-Tosyl-6,7-dihydro-5,5-dimethyl-2,3-diphenyl-7aff-indole (entry 4, 

Table 1). The reaction mixture was chromatc^r^hed using 15:1 hexane/EtOAc: ̂ HNMR 

(CDOs) 6 0.92 (s, 3 H, CH3), 1.03 (s, 3 H, CH3), lJ-2.0 (m, 3 H, CH2), 2.39 (s, 3 H, 
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CHs), 2.65 (m, 1 H, CH), 4.36 (m, 1 H, CH), 4.91 (d, /= 2.7 Hz, 1 H, vinyl), 6.8-7.4 (m, 

14H,aryl); I3c NMR (CDQs) 6 21.5, 28.0, 28.1, 30.2, 33.0, 36.1, 64.5, 124.3, 126.7, 

127.0, 127.1, 127.7, 128.2, 128.3, 129.2, 129.7, 130.5, 131.2, 132.4, 133.6, 138.4, 

142.5, 143.6; IR (CHQs) 1603 (C=C), 1540 (C=C) cm-l; HRMS m/z 455.1919 (calcd for 

C29H29NO2S, 455.1919). 

iV-Tosyl-3-carboethoxy-6,7-dihydro-2-phenyl-5,5-dimethyl-7afir-indoIe 

(entry 5, Table 1). The reaction mixture was chromatogr^hed using 15:1 hexane®tOAc: 

iH NMR (CDQs) 6 0.85 (t, J= 12 Hz, 3 H, CH3), 1.04 (s, 3 H, CH3), 1.09 (s, 3 H, CH3), 

1.5-2.0 (m, 3 H, CH2), 2.39 (s, 3 H, CH2), 2.66 (m, 1 H, CH2), 3.90 (m, 2 H, CH2), 4.50 

(m, 1 H, CH), 5.62 (d, /= 3.0 Hz, 1 H, vinyl), 7.1-7.4 (m, 9 H, aryl); 13C NMR (CDCI3) 6 

13.5, 21.5, 28.0, 30.2, 31.0, 33.1, 35.7, 60.0, 65.6, 116.3, 126.6, 126.7, 127.9, 129.0, 

129.3, 129.8, 130.7, 133.1, 134.5, 144.2, 153.6, 163.7; IR (CHCI3) 1713 (C=0), 1597 

(C=C), 1537 (C=C) cm-l; hrmS m/z 451.1823 (calcd for C26H29NO4S, 451.1817). 

2-f-Butyl-l,l-dicarbomethoxy-6,7-dihydro-3,5,5-trimethyl-7aff-indene 

(entry 6, Table 1). The reaction mixture was chromatographed using 8:1 hexane/EtOAc: 

IH NMR (CDCI3) 6 0.94 (s, 3 H, CH3), 1.03 (s, 3 H, CH3), 1.17 (s, 9 H, CH3), 1.25 (m, 1 

H, CH), 1.40 (m, 1 H, CH), 1.65 (m, 1 H, CH), 1.85 (m, 1 H, CH), 1.95 (s, 3 H, CH3), 

2.82 (m, 1 H, CH), 3.70 (s, 3 H, CH3), 3.75 (s, 3 H, CH3), 5.17 (s, 1 H, vinyl); I3c NMR 

(CDa3)6 13.1, 22.4, 29.9, 31.3, 31.7, 32.2, 34.2, 37.7, 50.6, 51.4, 52.0, 68.9, 123.3, 

137.7, 144.4, 147.7, 169.7, 172.3; IR (CHa3) 1761 (C=0), 1737 (C=0) cm'l; HRMS m/z 

334.2144 (calcd for C20H30O4, 334.2144). 

l,l-Dicarbomethoxy-6,7-dihydro-2-triisopropylsilyl-3,5,S-trimethyl-

7aZr-indene (entry 7, Table 1). The reaction mixture was chromatographed using 15:1 

hexane/EtOAc: iH NMR (CDCI3) 6 0.95 (s, 3 H, CH3), 1.00-1.12 (m, 24 H, CH3), 1.35 (m, 

2 H, CH2), 1.60 (m, 1 H, CH), 1.90 (m, 1 H, CH), 1.94 (s, 3 H, CH3), 2.95 (m, 1 H, CH), 

3.62 (s, 3 H, CH3), 3.73 (s, 3 H, CH3), 5.24 (s, 1 H, vinyl); i^c NMR (CDa3) 6 13.5, 
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14.9, 19.6, 19.7, 22.5, 29.7, 31.0, 32.3, 37.6, 50.8, 51.2, 52.1, 71.9, 125.5, 138.2, 144.9, 

154.2, 169.9, 172.2; IR (CHCI3) 1721 (C=0) cm-i; HRMS m/z (M+ - CH(CH3)2) 391.2300 

(calcdforC22H3504Si, 391.2304). 

l,l-Dicarbomethoxy-6,7-dihydro-2-(2-methyI-2-(l,3-dioxolanyI))-5,5-

dimethyl-3-phenyl-7a£r-mdene (entry 8, Table 1). The reaction mixture was 

chromatogn5)hed using 15:1 hexane/EtOAc: NMR (CDCI3) 6 0.98 (s, 3 H, CH3), 1.08 (s, 

3 H, CH3), 1.13 (m, 2 H, C3l2), 1.57 (m, 2 H, CH2), 1.63 (s, 3 H, CH3), 1.86 (m, 1 H, 

CH), 3.28 (s, 3 H, CH3), 3.59 (s, 2 H, CH2), 3.73 (s, 2 H, CH2), 3.74 (s, 3 H, CH3), 5.94 

(m, 1 H, vinyl), 7.07 (m, 2 H, aryl), 7.23 (m, 3 H, aryl); NMR (CDCI3) 6 22.9, 25.9, 

29.5, 30.1, 31.0, 32.4, 37.1, 47.5, 51.9, 63.5, 63.7, 72.7, 108.9, 126.9, 127.1, 127.6, 

131.3, 137.3, 137.6,141.8, 144.1, 169.5,169.9; IR (CHas) 1724 (C=0) cm-l; HRMS m/z 

426.2047 (calcd for C25H30O6, 426.2042). 

Ethyl 5,6,7,8-tetrahydro-l,l-dinDiethyi-3-phenylisochromene-4-

carboxylate (entry 9, Table 1). Thereaction mixture was chromatographed using 83:1 

hexane/EtOAc: iR NMR (CDQs) 6 0.83 (t, J= 6.9 Hz, 3 H, CH3), 1.34 (s, 6 H, CH3), 1.56 

(m, 4 H, CH2), 1.94 (m, 2 H, CH2), 2.23 (m, 2 H, CH2), 3.86 (q, 7= 6.9 Hz, 2 H, CH2), 

7.24 (m, 3 H, aryl), 7.35 (m, 2 H, aryl); NMR (€©03) 6 13.7, 22.2, 22.4, 24.3, 24.5, 

25.5, 60.2, 79.3, 110.3, 122.9, 127.3, 127.6, 128.1, 128.9, 135.4, 153.4, 153.7, 168.3; IR 

(CHa3) 1713 (C=0), 1646 (C=C), 1586 (C=C) cm-1; HRMS m/z 312.1732 (calcd for 

C20H24Q3, 312.1725). 

5,6,7,8-Tetrahydro-3-(l-hydroxy-l-methylethyl)-l,l-dimethyl-4-

phenylisochromene (entry 10, Table 1). The reaction mixture was chromatographed 

using 15:1 hexane/EtOAc: iH NMR (CDQs) 6 1.18 (s, 6 H, CH3), 1.36 (s, 6 H, CH3), 1.49 

(m, 2 H, CH2), 1.54 (m, 4 H, CH2), 1.97 (m, 2 H, CH2), 2.25 (s, 1 H, OH), 7.10 (m, 2 H, 

aryl), 7.25 (m, 3 H, aryl); NMR (CDCI3) 6 22.3, 22.5, 24.2, 24.3, 26.1, 29.0, 72.3, 
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114.1, 125.8,126.7, 127.6 (2), 127.8, 130.9, 137.4, 149.9; IR (CHCI3) 3500 (OH), 1656 

(C=C), 1605 (C=C) cm-l; HRMS m/z 298.1934 (calcd forC2oH26Q2, 298.1933). 
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GENERAL CONCLUSION 

In this dissertation, it has been demonstrated that the palladium-catalyzed annulation of 

internal aliynes with a variety of aiyl and vinylic halides and triflates provides an efficient route 

to a number of hetero- and carbocyclic ring systems, including indaiones, isocoumarins, 

benzofurans, isochromenes, phenanthrenes, furans, and other miscellaneous aromatic and 

vinylic ring systems. 

The common thread that ties chapters 1-5 together is that the methodology generally 

requires hindered or symmetrical alkynes containing tertiary centers to obtain high-yielding, 

usable, clean reactions. This restriction can perhaps best be explained by examining how a 

hindraed totiary alliyne limits the available reaction padiways for the annulation process as 

shown in Scheme 1. Following oxidative addition of the aryl or vinyl halide or triflate to 

Pd(0), there are two possible patiis (paths 1 and 2) by which alkyne insertion can take place. 

Since the addition of aryl- or vinylpaHadium species to unsymmetrical hindered alkynes 

containing tertiary centss is r^oselective and leads to vinylpalladium intermediates in which 

the stoically more hindered group is located at the caibon atom a-bonded to the palladium, 

path 2 is eliminated and only one vinylpalladium intermediate is formed. The resultant 

vinylpalladium intermediate could then either P-hydride eliminate to form an allene (path 3), 

close to form a palladacycle (path 4), or insert anotho- alkyne (patfi 5). The tertiary center 

prevents the ^-hydride elimination (path 3). It also shields the vinylpalladium intermediate, 

thus simultaneously discouraging insertion of another alkyne (path S) and allowing more time 

for the annulation products to form (path 4). Path 4 should also be fevored by using better 

nucleophiles. 

Cyclic vinylic halides or triflates are also cunently necessary in order to obtain good 

yields widi those systems. It is imclear why these reactions proceed well, whereas similar 

reactions with acyclic systems give complex mixtures or no discernible products. Perhaps the 



www.manaraa.com

97 

Scheme 1 

,XH 

Pd-Y path 1 path 2 

XH ,XH ,XH 

Pd-Y Pd-Y 

path 3 
-HPdY path 5 path 4 

Base 
-HY 

Pd{0) 

,XH 

cyclic systems are more stable under the reaction conditions and/or are unable to P-hydride 

eliminate following insertion into Pd(0). More work needs to be done to elucidate these and 

other factors governing these reactions. 

In summary, a usefiil and convenient synthesis of hetero- or caibocycles has been 

developed using the palladium-catalyzed annulation of internal alkynes from aromatic or cyclic 

vinylic hali<ks or triflates. The reactions proceed under relatively mild conditions and use 
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easily accessible starting materials. The process works best with hindered allqmes containing 

tertiary caiters and usually gives yields ranging from 50 - 80 %. 
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APPENDIX A: CHAPTER 1 iR AND NMR INDENONE SPECTRA 
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APPENDIX B: CHAPTER 2 iR AND NMR ISOCOUMARIN AND a-PYRONE 

SPECTRA 
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APPENDIX C: CHAPTER 3 iR AND NMR BENZOFURAN AND ISOCHROMENE 

SPECTRA 
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APPENDIX D: CHAPTER 4 ^H AND l^C NMR PHENANTHRENE SPECTRA 
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APPENDIX E: CHAPTER 5 AND NMR VINYLIC HEIERO- AND CARBOCYCLE 

SPECTRA 
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